On reduction modulo a prime of fields of modular functions
Izvestiya. Mathematics , Tome 2 (1968) no. 6, pp. 1213-1222.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the reduction modulo $p$ of a subring of the field of modular functions $K(p^\infty)$ modulo $p$. We obtain a generalization of a known congruence of Weber.
@article{IM2_1968_2_6_a2,
     author = {I. I. Pyatetskii-Shapiro},
     title = {On reduction modulo a prime of fields of modular functions},
     journal = {Izvestiya. Mathematics },
     pages = {1213--1222},
     publisher = {mathdoc},
     volume = {2},
     number = {6},
     year = {1968},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_6_a2/}
}
TY  - JOUR
AU  - I. I. Pyatetskii-Shapiro
TI  - On reduction modulo a prime of fields of modular functions
JO  - Izvestiya. Mathematics 
PY  - 1968
SP  - 1213
EP  - 1222
VL  - 2
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1968_2_6_a2/
LA  - en
ID  - IM2_1968_2_6_a2
ER  - 
%0 Journal Article
%A I. I. Pyatetskii-Shapiro
%T On reduction modulo a prime of fields of modular functions
%J Izvestiya. Mathematics 
%D 1968
%P 1213-1222
%V 2
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1968_2_6_a2/
%G en
%F IM2_1968_2_6_a2
I. I. Pyatetskii-Shapiro. On reduction modulo a prime of fields of modular functions. Izvestiya. Mathematics , Tome 2 (1968) no. 6, pp. 1213-1222. http://geodesic.mathdoc.fr/item/IM2_1968_2_6_a2/

[1] Pyatetskii-Shapiro I. I., Shafarevich I. R., “Teoriya Galua transtsendentnykh rasshirenii i uniformizatsiya”, Izv. AN SSSR. Ser. matem., 30 (1966), 671–704

[2] Shimura G., “Correspondances modulaires et les fonctions $\zeta$ de courbes algebriques”, J. Math. Soc. Japan., 10 (1958), 1–28 | MR | Zbl

[3] Weber H., Algebra, b. 3, Braunschweig, 1908

[4] Gelfand I. M., Naimark M. A., “Unitarnye predstavleniya gruppy Lorentsa”, Izv. AN SSSR. Ser. matem., 11 (1947), 411–504 | MR