Adams operators and fixed points
Izvestiya. Mathematics, Tome 2 (1968) no. 6, pp. 1193-1211
Cet article a éte moissonné depuis la source Math-Net.Ru
The aim of this article is to calculate the Conner–Floyd invariants of the fixed points of the action of a cyclic group, by analogy with Adams operators. We shall correct the mistakes made in a previous article.
@article{IM2_1968_2_6_a1,
author = {S. P. Novikov},
title = {Adams operators and fixed points},
journal = {Izvestiya. Mathematics},
pages = {1193--1211},
year = {1968},
volume = {2},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_6_a1/}
}
S. P. Novikov. Adams operators and fixed points. Izvestiya. Mathematics, Tome 2 (1968) no. 6, pp. 1193-1211. http://geodesic.mathdoc.fr/item/IM2_1968_2_6_a1/
[1] Tamura I., “Characteristic classes of $M$-spaces. I”, J. Math. Soc. Japan, 11:4 (1959), 312–342 | MR | Zbl
[2] Hovikov S. P., “Metody algebraicheskoi topologii s tochki zreniya teorii kobordizmov”, Izv. AN SSSR. Ser. matem., 31 (1967), 855–951
[3] Atya M., Bott R., “Zametki o teoreme Lefshetsa o nepodvizhnoi tochke”, Matematika, 10:4 (1966), 101–139