Adams operators and fixed points
Izvestiya. Mathematics , Tome 2 (1968) no. 6, pp. 1193-1211.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this article is to calculate the Conner–Floyd invariants of the fixed points of the action of a cyclic group, by analogy with Adams operators. We shall correct the mistakes made in a previous article.
@article{IM2_1968_2_6_a1,
     author = {S. P. Novikov},
     title = {Adams operators and fixed points},
     journal = {Izvestiya. Mathematics },
     pages = {1193--1211},
     publisher = {mathdoc},
     volume = {2},
     number = {6},
     year = {1968},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_6_a1/}
}
TY  - JOUR
AU  - S. P. Novikov
TI  - Adams operators and fixed points
JO  - Izvestiya. Mathematics 
PY  - 1968
SP  - 1193
EP  - 1211
VL  - 2
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1968_2_6_a1/
LA  - en
ID  - IM2_1968_2_6_a1
ER  - 
%0 Journal Article
%A S. P. Novikov
%T Adams operators and fixed points
%J Izvestiya. Mathematics 
%D 1968
%P 1193-1211
%V 2
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1968_2_6_a1/
%G en
%F IM2_1968_2_6_a1
S. P. Novikov. Adams operators and fixed points. Izvestiya. Mathematics , Tome 2 (1968) no. 6, pp. 1193-1211. http://geodesic.mathdoc.fr/item/IM2_1968_2_6_a1/

[1] Tamura I., “Characteristic classes of $M$-spaces. I”, J. Math. Soc. Japan, 11:4 (1959), 312–342 | MR | Zbl

[2] Hovikov S. P., “Metody algebraicheskoi topologii s tochki zreniya teorii kobordizmov”, Izv. AN SSSR. Ser. matem., 31 (1967), 855–951

[3] Atya M., Bott R., “Zametki o teoreme Lefshetsa o nepodvizhnoi tochke”, Matematika, 10:4 (1966), 101–139