Basicity and unicellularity of weighted shift operators
Izvestiya. Mathematics , Tome 2 (1968) no. 5, pp. 1077-1089.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the sequence spaces $l^p$ the invariant subspaces of weighted shift operators $T=S\Lambda$ are investigated, along with the problem of when a system $\{t_nT^nx\}^\infty_{n=0}$, $x\in l^p$, forms a Riesz basis in $l^p$.
@article{IM2_1968_2_5_a7,
     author = {N. K. Nikol'skii},
     title = {Basicity and unicellularity of weighted shift operators},
     journal = {Izvestiya. Mathematics },
     pages = {1077--1089},
     publisher = {mathdoc},
     volume = {2},
     number = {5},
     year = {1968},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_5_a7/}
}
TY  - JOUR
AU  - N. K. Nikol'skii
TI  - Basicity and unicellularity of weighted shift operators
JO  - Izvestiya. Mathematics 
PY  - 1968
SP  - 1077
EP  - 1089
VL  - 2
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1968_2_5_a7/
LA  - en
ID  - IM2_1968_2_5_a7
ER  - 
%0 Journal Article
%A N. K. Nikol'skii
%T Basicity and unicellularity of weighted shift operators
%J Izvestiya. Mathematics 
%D 1968
%P 1077-1089
%V 2
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1968_2_5_a7/
%G en
%F IM2_1968_2_5_a7
N. K. Nikol'skii. Basicity and unicellularity of weighted shift operators. Izvestiya. Mathematics , Tome 2 (1968) no. 5, pp. 1077-1089. http://geodesic.mathdoc.fr/item/IM2_1968_2_5_a7/

[1] Brodskii M. S., “O zhordanovykh kletkakh beskonechnomernykh operatorov”, Dokl. AN SSSR, 111:5 (1956), 925–929 | MR

[2] Zigmund A., Trigonometricheskie ryady, Mir, M., 1965 | MR

[3] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Fizmatgiz, M., 1959 | MR

[4] Mandelbroit S., Kvazianaliticheskie klassy funktsii, ONTI, M., L., 1937

[5] Nikolskii I. K., “Invariantnye podprostranstva nekotorykh vpolne nepreryvnykh operatorov”, Vestn. LGU, ser. matem., 7:2 (1965), 68–77

[6] Nikolskii N. K., “Ob invariantnykh podprostranstvakh vzveshennykh operatorov sdviga”, Matem. sb., 74(116) (1967), 171–190 | MR

[7] Halmos P., “A glimpse into Hilbert space”, Lectures on modern mathematics, vol. I, New York, London, 1963 | MR

[8] Nikolskii N. K., Invariantnye podprostranstva operatora sdviga v nekotorykh prostranstvakh posledovatelnostei, Dissertatsiya, LGU, 1966

[9] Nikolskii N. K., “Bazisnost i odnokletochnost operatorov vzveshennogo sdviga”, Funktsionalnyi analiz i ego prilozheniya, 2:2 (1968), 95–96 | MR