A generalized Riemann--Liouville operator and some of its
Izvestiya. Mathematics , Tome 2 (1968) no. 5, pp. 1027-1063.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we formulate operators which constitute an essential generalization of the Riemann–Liouville fractional integro-differentiation operator. With the aid of these operators fundamentally new analogues of the classical formulas of Cauchy, Schwarz, and Poisson for the representation of analytic and harmonic functions in the interior of a circle are established. These formulas enable us to give a complete structural representation for the broad classes of harmonic and analytic functions associated with the generalized operators. Finally, in this paper we also establish sufficient conditions for the solvability of the Hausdorff and Stieltjes moment problems for some general families of sequences of positive numbers.
@article{IM2_1968_2_5_a5,
     author = {M. M. Dzhrbashyan},
     title = {A generalized {Riemann--Liouville} operator and some of its},
     journal = {Izvestiya. Mathematics },
     pages = {1027--1063},
     publisher = {mathdoc},
     volume = {2},
     number = {5},
     year = {1968},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_5_a5/}
}
TY  - JOUR
AU  - M. M. Dzhrbashyan
TI  - A generalized Riemann--Liouville operator and some of its
JO  - Izvestiya. Mathematics 
PY  - 1968
SP  - 1027
EP  - 1063
VL  - 2
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1968_2_5_a5/
LA  - en
ID  - IM2_1968_2_5_a5
ER  - 
%0 Journal Article
%A M. M. Dzhrbashyan
%T A generalized Riemann--Liouville operator and some of its
%J Izvestiya. Mathematics 
%D 1968
%P 1027-1063
%V 2
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1968_2_5_a5/
%G en
%F IM2_1968_2_5_a5
M. M. Dzhrbashyan. A generalized Riemann--Liouville operator and some of its. Izvestiya. Mathematics , Tome 2 (1968) no. 5, pp. 1027-1063. http://geodesic.mathdoc.fr/item/IM2_1968_2_5_a5/

[1] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, gl. IX, Nauka, 1966

[2] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M., L., 1950

[3] Herglotz G., Leipzig Ber., 63 (1911), 501–511 | Zbl

[4] Riez F., “Sur certains sistèms singuliers d'équations intégrales”, Ann. de l'Ec. Norm., 28:3 (1911), 34–62

[5] Hausdorf R., “Summationsmethoden und Momentenfolgen. I”, Math. Zeitschr., 9 (1921), 74–109 ; “II”, 280–299 | DOI | MR | Zbl | Zbl

[6] Shohat J., Tamarkin J., The problem of moments, New York, 1943, pp. 86–89

[7] Bari N. K., Trigonometricheskie ryady, gl. I, V, M., 1961 | MR

[8] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Gostekhizdat, M., 1957 | MR

[9] Widder D., The Laplas transform, cap. IV, Princeton, 1946 | Zbl

[10] Bernshtein S. N., “Sur les fonctions absolument monotones”, Acta Math., 51 (1938), 1–66 | DOI

[11] Goncharov V. L., Teoriya interpolirovaniya i priblizheniya funktsii, gl. IV, Gostekhizdat, M., L., 1954