On abelian subgroups and the conjugacy problem in free periodic
Izvestiya. Mathematics, Tome 2 (1968) no. 5, pp. 1131-1144
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove the finiteness of any abelian subgroup of a free periodic group of odd order $n \geqslant4381$. We also show that for these groups the conjugacy problem is solvable.
@article{IM2_1968_2_5_a11,
author = {P. S. Novikov and S. I. Adian},
title = {On abelian subgroups and the conjugacy problem in free periodic},
journal = {Izvestiya. Mathematics},
pages = {1131--1144},
year = {1968},
volume = {2},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_5_a11/}
}
P. S. Novikov; S. I. Adian. On abelian subgroups and the conjugacy problem in free periodic. Izvestiya. Mathematics, Tome 2 (1968) no. 5, pp. 1131-1144. http://geodesic.mathdoc.fr/item/IM2_1968_2_5_a11/
[1] Novikov P. S., Adyan S. I., “O beskonechnykh periodicheskikh gruppakh. I, II, III”, Izv. AN SSSR. Ser. matem., 32:1 (1968), 212–244 ; 2, 251–524 ; 3, 709–731 | MR | Zbl | MR | MR
[2] Novikov P. S., Adyan S. I., “Opredelyayuschie sootnosheniya i problema tozhdestva dlya svobodnykh periodicheskikh grupp nechetnogo poryadka”, Izv. AN SSSR. Ser. matem., 32 (1968), 971–979 | Zbl