Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1968_2_5_a0, author = {G. Kh. Sindalovskii}, title = {Derivatives of continuous functions}, journal = {Izvestiya. Mathematics }, pages = {943--978}, publisher = {mathdoc}, volume = {2}, number = {5}, year = {1968}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_5_a0/} }
G. Kh. Sindalovskii. Derivatives of continuous functions. Izvestiya. Mathematics , Tome 2 (1968) no. 5, pp. 943-978. http://geodesic.mathdoc.fr/item/IM2_1968_2_5_a0/
[1] Saks S., Teoriya integrala, IL, M., 1949
[2] Sindalovskii G. X., “O nepreryvnosti i differentsiruemosti otnositelno kongruentnykh mnozhestv”, Izv. AN SSSR. Ser. matem., 26 (1962), 125–142 | MR | Zbl
[3] Sindalovskii G. X., “O nepreryvnosti i differentsiruemosti otnositelno kongruentnykh mnozhestv”, Dokl. AN SSSR, 134:6 (1960), 1305–1306 | MR | Zbl
[4] Sindalovskii G. X., “O kongruentnoi i asimptoticheskoi differentsiruemosti”, Dokl. AN SSSR, 150:5 (1963), 995–997 | MR | Zbl
[5] Sindalovskii G. X., “Differentsiruemost otnositelno kongruentnykh mnozhestv”, Izv. AN SSSR. Ser. matem., 29 (1965), 11–40 | MR
[6] Sindalovskii G. X., “Ob ekvivalentnosti obyknovennykh proizvodnykh chisel i proizvodnykh chisel otnositelno kongruentnykh mnozhestv nekotorogo klassa”, Izv. AN SSSR. Ser. matem., 29 (1965), 987–996 | MR | Zbl
[7] Tolstov G. P., “Zamechanie k teoreme D. F. Egorova”, Dokl. AN SSSR, 22:6 (1939), 309–311
[8] Sindalovskii G. X., “O ravnomernoi skhodimosti semeistva funktsii, zavisyaschikh ot nepreryvno menyayuschegosya parametra”, Vestn. Mosk. un-ta, seriya matem., mekhanika, 5 (1960), 14–18 | MR | Zbl
[9] Sindalovskii G. X., “O postroenii nepreryvnykh funktsii s zadannymi differentsialnymi svoistvami na mnozhestve polnoi mery i nekotorykh prilozheniyakh k ryadam Fure”, Matem. sb., 69(111) (1966), 640–657 | MR | Zbl
[10] Xinchin A. Ya., “Issledovaniya o stroenii izmerimykh funktsii”, Matem. sb., 31:2 (1923), 265–285 | Zbl
[11] Sindalovskii G. X., “O proizvodnykh chislakh nepreryvnykh funktsii”, Uspekhi matem. nauk, XXI:5(131) (1966), 274–277 | MR