Three sequences of formulas with two variables in the positive propositional logic
Izvestiya. Mathematics , Tome 2 (1968) no. 4, pp. 845-848.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some questions of the positive calculus are considered.
@article{IM2_1968_2_4_a9,
     author = {V. A. Yankov},
     title = {Three sequences of formulas with two variables in the positive propositional logic},
     journal = {Izvestiya. Mathematics },
     pages = {845--848},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {1968},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a9/}
}
TY  - JOUR
AU  - V. A. Yankov
TI  - Three sequences of formulas with two variables in the positive propositional logic
JO  - Izvestiya. Mathematics 
PY  - 1968
SP  - 845
EP  - 848
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a9/
LA  - en
ID  - IM2_1968_2_4_a9
ER  - 
%0 Journal Article
%A V. A. Yankov
%T Three sequences of formulas with two variables in the positive propositional logic
%J Izvestiya. Mathematics 
%D 1968
%P 845-848
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a9/
%G en
%F IM2_1968_2_4_a9
V. A. Yankov. Three sequences of formulas with two variables in the positive propositional logic. Izvestiya. Mathematics , Tome 2 (1968) no. 4, pp. 845-848. http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a9/

[1] Rasiowa H., Sikorski R., The mathematics of metamathematics, Warszawa, 1963

[2] Nishimura I., “On formulas of one variable in intuitionistic propositional calculus”, J. Simbolic logic, 25:4 (1960), 327–331 | DOI | MR | Zbl

[3] Yankov V. A., “O nekotorykh superkonstruktivnykh ischisleniyakh vyskazyvanii”, Dokl. AN SSSR, 151:4 (1963), 795–796