A generalization of Esseen's inequality and its application in probabilistic number theory
Izvestiya. Mathematics , Tome 2 (1968) no. 4, pp. 821-844.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a generalization of Esseen's inequality on rhe estimation of the difference between distribution functions in terms of the difference between their characteristic functions. The generalization holds without any restrictions on the distributions in question. The result is applied to the refinement of the limit theorems connected with the distribution of values of arithmetical functions.
@article{IM2_1968_2_4_a8,
     author = {A. S. Fainleib},
     title = {A generalization of {Esseen's} inequality and its application in probabilistic number theory},
     journal = {Izvestiya. Mathematics },
     pages = {821--844},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {1968},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a8/}
}
TY  - JOUR
AU  - A. S. Fainleib
TI  - A generalization of Esseen's inequality and its application in probabilistic number theory
JO  - Izvestiya. Mathematics 
PY  - 1968
SP  - 821
EP  - 844
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a8/
LA  - en
ID  - IM2_1968_2_4_a8
ER  - 
%0 Journal Article
%A A. S. Fainleib
%T A generalization of Esseen's inequality and its application in probabilistic number theory
%J Izvestiya. Mathematics 
%D 1968
%P 821-844
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a8/
%G en
%F IM2_1968_2_4_a8
A. S. Fainleib. A generalization of Esseen's inequality and its application in probabilistic number theory. Izvestiya. Mathematics , Tome 2 (1968) no. 4, pp. 821-844. http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a8/

[1] Esseen C. G., “Fourier analysis of distribution functions”, Acta math., 77 (1945), 1–125 | DOI | MR | Zbl

[2] Levin B. V., Fainleib A. S., “Primenenie nekotorykh integralnykh uravnenii k voprosam teorii chisel”, Uspekhi matem. nauk, 22:3 (1967), 119–197 | MR | Zbl

[3] Kubilyus I. P., Veroyatnostnye metody v teorii chisel, Vilnyus, 1962 | Zbl

[4] Barban M. B., Vinogradov A. I., “O teoretiko-chislovom bazise veroyatnostnoi teorii chisel”, Dokl. AN SSSR, 154:3 (1964), 495–496 | MR | Zbl

[5] Renyi A., Turan P., “On a theorem of Erdös–Kac”, Acta arithm., 4 (1958), 71–84 | MR | Zbl

[6] Erdös P., Wintner A., “Additive arithmetical functions and statistical independence”, Amer. J. Math., 61 (1939), 713–721 | DOI | MR | Zbl

[7] Tyan M. M., “K voprosu o raspredelenii znachenii funktsii Eilera $\varphi(n)$”, Litovsk. matem. sb., 1966, no. 1, 105–119

[8] Fainleib A. S., “O raspredelenii znachenii funktsii Eilera”, Matem. zametki, 1:6 (1967), 645–652 | MR | Zbl

[9] Levin B. V., Fainleib A. S., “Ob odnom metode summirovaniya multiplikativnykh funktsii”, Izv. AN SSSR. Ser. matem., 31 (1967), 697–710 | MR | Zbl

[10] Erdös P., Turan P., “On a problem in the theory of uniform distribution”, Proc. Acad. Wet. Amsterdam, 51 (1948), 1146–1154 | MR | Zbl

[11] Kramer G., Sluchainye velichiny i raspredeleniya veroyatnostei, IL, M., 1947

[12] Renyi A., “A new proof of a theorem of Delange”, Publ. Math., 12 (1965), 323–329 | MR | Zbl

[13] Hecke E., Mathematische Werke, Göttingen, 1959 | MR | Zbl