On functions of bounded $p$-variation
Izvestiya. Mathematics , Tome 2 (1968) no. 4, pp. 799-819

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we obtain an asymptotic formula for the approximations to functions in the class $V_p^\alpha$ ($0\leqslant\alpha\infty$, $1\leqslant p\infty$) by Fourier sums in the metric of $L^p $ ($1\leqslant p$). We find sufficient conditions and also criteria for the continuity of the derivative $f^\alpha(t)$ of a function in the class $V_p^\alpha$. We also give some results on the Fourier coefficients of functions in the above class.
@article{IM2_1968_2_4_a7,
     author = {B. I. Golubov},
     title = {On functions of bounded $p$-variation},
     journal = {Izvestiya. Mathematics },
     pages = {799--819},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {1968},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a7/}
}
TY  - JOUR
AU  - B. I. Golubov
TI  - On functions of bounded $p$-variation
JO  - Izvestiya. Mathematics 
PY  - 1968
SP  - 799
EP  - 819
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a7/
LA  - en
ID  - IM2_1968_2_4_a7
ER  - 
%0 Journal Article
%A B. I. Golubov
%T On functions of bounded $p$-variation
%J Izvestiya. Mathematics 
%D 1968
%P 799-819
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a7/
%G en
%F IM2_1968_2_4_a7
B. I. Golubov. On functions of bounded $p$-variation. Izvestiya. Mathematics , Tome 2 (1968) no. 4, pp. 799-819. http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a7/