On the property of being Frobenius of the semigroup algebra of a~finite commutative semigroup
Izvestiya. Mathematics , Tome 2 (1968) no. 4, pp. 781-797.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we give a criterion for the semigroup algebra $K\mathfrak G$ of a finite commutative semigroup $\mathfrak G$ over a field $K$ to be Frobenius.
@article{IM2_1968_2_4_a6,
     author = {I. S. Ponizovskii},
     title = {On the property of being {Frobenius} of the semigroup algebra of a~finite commutative semigroup},
     journal = {Izvestiya. Mathematics },
     pages = {781--797},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {1968},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a6/}
}
TY  - JOUR
AU  - I. S. Ponizovskii
TI  - On the property of being Frobenius of the semigroup algebra of a~finite commutative semigroup
JO  - Izvestiya. Mathematics 
PY  - 1968
SP  - 781
EP  - 797
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a6/
LA  - en
ID  - IM2_1968_2_4_a6
ER  - 
%0 Journal Article
%A I. S. Ponizovskii
%T On the property of being Frobenius of the semigroup algebra of a~finite commutative semigroup
%J Izvestiya. Mathematics 
%D 1968
%P 781-797
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a6/
%G en
%F IM2_1968_2_4_a6
I. S. Ponizovskii. On the property of being Frobenius of the semigroup algebra of a~finite commutative semigroup. Izvestiya. Mathematics , Tome 2 (1968) no. 4, pp. 781-797. http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a6/

[1] Curtis C. W., Reiner T., Representation theory of finite groups and associative algebras, New York, London, 1962 | MR

[2] Lyapin E. S., Polugruppy, Fizmatgiz, M., 1960 | MR