On the decrease of harmonic functions of three variables in a solid of revolution
Izvestiya. Mathematics, Tome 2 (1968) no. 4, pp. 725-733
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we prove a theorem on the decrease of harmonic functions of three variables in a solid of revolution $$ x>a, \quad \sqrt{{x_1}^2+{x_2}^2}\frac12h(x), $$ that is analogous to the theorem on the decrease of analytic functions in a domain.
@article{IM2_1968_2_4_a3,
author = {I. S. Arshon},
title = {On the decrease of harmonic functions of three variables in a~solid of revolution},
journal = {Izvestiya. Mathematics},
pages = {725--733},
year = {1968},
volume = {2},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a3/}
}
I. S. Arshon. On the decrease of harmonic functions of three variables in a solid of revolution. Izvestiya. Mathematics, Tome 2 (1968) no. 4, pp. 725-733. http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a3/
[1] Arshon I. S., Iglitskii M. A., “Ob ubyvanii garmonicheskikh funktsii v tsilindre”, Dokl. AN SSSR, 152:4 (1963), 775–778 | Zbl
[2] Arshon I. S., Pak M. A, “Teorema edinstvennosti dlya garmonicheskikh funktsii v poluprostranstve”, Matem. sb., 68 (1965), 148–151 | MR | Zbl
[3] Arshon I. S., “Ob ubyvanii garmonicheskikh funktsii trekh peremennykh”, Izv. AN SSSR. Ser. matem., 29 (1965), 1283–1294
[4] Landis E. M., “Nekotorye voprosy kachestvennoi teorii ellipticheskikh uravnenii vtorogo poryadka (sluchai mnogikh nezavisimykh peremennykh)”, Uspekhi matem. nauk, 18:1(109) (1963), 3–62 | MR | Zbl