On the decrease of harmonic functions of three variables in a~solid of revolution
Izvestiya. Mathematics , Tome 2 (1968) no. 4, pp. 725-733
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we prove a theorem on the decrease of harmonic functions of three variables in a solid of revolution
$$
x>a, \quad \sqrt{{x_1}^2+{x_2}^2}\frac12h(x),
$$
that is analogous to the theorem on the decrease of analytic functions in a domain.
@article{IM2_1968_2_4_a3,
author = {I. S. Arshon},
title = {On the decrease of harmonic functions of three variables in a~solid of revolution},
journal = {Izvestiya. Mathematics },
pages = {725--733},
publisher = {mathdoc},
volume = {2},
number = {4},
year = {1968},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a3/}
}
I. S. Arshon. On the decrease of harmonic functions of three variables in a~solid of revolution. Izvestiya. Mathematics , Tome 2 (1968) no. 4, pp. 725-733. http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a3/