Defining relations and the word problem for free periodic groups of odd order
Izvestiya. Mathematics , Tome 2 (1968) no. 4, pp. 935-942
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the free periodic group of odd order $n\geqslant4381$ with $m>1$ generators cannot be given by a finite number of defining relations. The word problem for these groups is solvable.
@article{IM2_1968_2_4_a13,
author = {P. S. Novikov and S. I. Adian},
title = {Defining relations and the word problem for free periodic groups of odd order},
journal = {Izvestiya. Mathematics },
pages = {935--942},
publisher = {mathdoc},
volume = {2},
number = {4},
year = {1968},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a13/}
}
TY - JOUR AU - P. S. Novikov AU - S. I. Adian TI - Defining relations and the word problem for free periodic groups of odd order JO - Izvestiya. Mathematics PY - 1968 SP - 935 EP - 942 VL - 2 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a13/ LA - en ID - IM2_1968_2_4_a13 ER -
P. S. Novikov; S. I. Adian. Defining relations and the word problem for free periodic groups of odd order. Izvestiya. Mathematics , Tome 2 (1968) no. 4, pp. 935-942. http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a13/