Defining relations and the word problem for free periodic groups of odd order
Izvestiya. Mathematics , Tome 2 (1968) no. 4, pp. 935-942.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the free periodic group of odd order $n\geqslant4381$ with $m>1$ generators cannot be given by a finite number of defining relations. The word problem for these groups is solvable.
@article{IM2_1968_2_4_a13,
     author = {P. S. Novikov and S. I. Adian},
     title = {Defining relations and the word problem for free periodic groups of odd order},
     journal = {Izvestiya. Mathematics },
     pages = {935--942},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {1968},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a13/}
}
TY  - JOUR
AU  - P. S. Novikov
AU  - S. I. Adian
TI  - Defining relations and the word problem for free periodic groups of odd order
JO  - Izvestiya. Mathematics 
PY  - 1968
SP  - 935
EP  - 942
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a13/
LA  - en
ID  - IM2_1968_2_4_a13
ER  - 
%0 Journal Article
%A P. S. Novikov
%A S. I. Adian
%T Defining relations and the word problem for free periodic groups of odd order
%J Izvestiya. Mathematics 
%D 1968
%P 935-942
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a13/
%G en
%F IM2_1968_2_4_a13
P. S. Novikov; S. I. Adian. Defining relations and the word problem for free periodic groups of odd order. Izvestiya. Mathematics , Tome 2 (1968) no. 4, pp. 935-942. http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a13/

[1] Novikov P. S., Adyan S. I., “O beskonechnykh periodicheskikh gruppakh. I, II, III”, Izv. AN SSSR. Ser. matem., 32:1 (1968), 212–244 ; 2, 251–524 ; 3, 709–731 | MR | Zbl | MR | MR

[2] Arshon S. E., “Dokazatelstvo suschestvovaniya $n$-znachnykh beskonechnykh asimmetrichnykh posledovatelnostei”, Matem. sb., 2(44) (1937), 769–779 | Zbl