Defining relations and the word problem for free periodic groups of odd order
Izvestiya. Mathematics, Tome 2 (1968) no. 4, pp. 935-942
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that the free periodic group of odd order $n\geqslant4381$ with $m>1$ generators cannot be given by a finite number of defining relations. The word problem for these groups is solvable.
@article{IM2_1968_2_4_a13,
author = {P. S. Novikov and S. I. Adian},
title = {Defining relations and the word problem for free periodic groups of odd order},
journal = {Izvestiya. Mathematics},
pages = {935--942},
year = {1968},
volume = {2},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a13/}
}
P. S. Novikov; S. I. Adian. Defining relations and the word problem for free periodic groups of odd order. Izvestiya. Mathematics, Tome 2 (1968) no. 4, pp. 935-942. http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a13/
[1] Novikov P. S., Adyan S. I., “O beskonechnykh periodicheskikh gruppakh. I, II, III”, Izv. AN SSSR. Ser. matem., 32:1 (1968), 212–244 ; 2, 251–524 ; 3, 709–731 | MR | Zbl | MR | MR
[2] Arshon S. E., “Dokazatelstvo suschestvovaniya $n$-znachnykh beskonechnykh asimmetrichnykh posledovatelnostei”, Matem. sb., 2(44) (1937), 769–779 | Zbl