On the representation of arbitrary functions of two complex
Izvestiya. Mathematics, Tome 2 (1968) no. 3, pp. 573-584
Cet article a éte moissonné depuis la source Math-Net.Ru
We investigate the question of representing a function $F(z,s)$ by a functional series of the form \begin{equation} \sum^\infty_{n,k=1}a_{nk}A(z,s,\lambda_n,\mu_k), \tag{1} \end{equation} where $A(z,s,\lambda,\mu)$ is a function of sufficiently general character. We establish a rule by which an arbitrary function $F(z,s)$ can be put into correspondence with a series of the form (1), and also establish a formula for the difference between $F(z,s)$ and a partial sum of the series (1).
@article{IM2_1968_2_3_a4,
author = {V. P. Gromov},
title = {On the representation of arbitrary functions of two complex},
journal = {Izvestiya. Mathematics},
pages = {573--584},
year = {1968},
volume = {2},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_3_a4/}
}
V. P. Gromov. On the representation of arbitrary functions of two complex. Izvestiya. Mathematics, Tome 2 (1968) no. 3, pp. 573-584. http://geodesic.mathdoc.fr/item/IM2_1968_2_3_a4/
[1] Leontev A. F., “O predstavlenii tselykh funktsii nekotorymi obschimi ryadami”, Matem. sb., 71(113) (1966), 3–13 | MR
[2] Leontev A. F., “O predstavlenii funktsii posledovatelnostyami polinomov Dirikhle”, Matem. sb., 70(112) (1966), 132–144 | MR
[3] Leontev A. F., “K voprosu o predstavlenii proizvolnykh funktsii nekotorymi obschimi ryadami”, Matem. zametki, 1:6 (1967), 689–698 | MR