$K$-theory on the category of infinite cell complexes
Izvestiya. Mathematics , Tome 2 (1968) no. 3, pp. 515-556

Voir la notice de l'article provenant de la source Math-Net.Ru

The main purpose of the article is to compute cohomology operations in $K$-theory $\operatorname{mod}p$ and operations from the usual cohomology theory into $K$-theory. The proposed method is based on the extension of $K$-theory to a category of infinite complexes, which makes it possible to use spectral sequences of the “bar-construction” type.
@article{IM2_1968_2_3_a2,
     author = {V. M. Buchstaber and A. S. Mishchenko},
     title = {$K$-theory on the category of infinite cell complexes},
     journal = {Izvestiya. Mathematics },
     pages = {515--556},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {1968},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_3_a2/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - A. S. Mishchenko
TI  - $K$-theory on the category of infinite cell complexes
JO  - Izvestiya. Mathematics 
PY  - 1968
SP  - 515
EP  - 556
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1968_2_3_a2/
LA  - en
ID  - IM2_1968_2_3_a2
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A A. S. Mishchenko
%T $K$-theory on the category of infinite cell complexes
%J Izvestiya. Mathematics 
%D 1968
%P 515-556
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1968_2_3_a2/
%G en
%F IM2_1968_2_3_a2
V. M. Buchstaber; A. S. Mishchenko. $K$-theory on the category of infinite cell complexes. Izvestiya. Mathematics , Tome 2 (1968) no. 3, pp. 515-556. http://geodesic.mathdoc.fr/item/IM2_1968_2_3_a2/