Infinite periodic groups. I
Izvestiya. Mathematics , Tome 2 (1968) no. 1, pp. 209-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we construct an example of an infinite periodic group with a finite number of generators, in which the orders of all the elements are bounded by a specified number. This is a solution of the well-known Burnside problem.
@article{IM2_1968_2_1_a9,
     author = {P. S. Novikov and S. I. Adian},
     title = {Infinite periodic groups. {I}},
     journal = {Izvestiya. Mathematics },
     pages = {209--236},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {1968},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_1_a9/}
}
TY  - JOUR
AU  - P. S. Novikov
AU  - S. I. Adian
TI  - Infinite periodic groups. I
JO  - Izvestiya. Mathematics 
PY  - 1968
SP  - 209
EP  - 236
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1968_2_1_a9/
LA  - en
ID  - IM2_1968_2_1_a9
ER  - 
%0 Journal Article
%A P. S. Novikov
%A S. I. Adian
%T Infinite periodic groups. I
%J Izvestiya. Mathematics 
%D 1968
%P 209-236
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1968_2_1_a9/
%G en
%F IM2_1968_2_1_a9
P. S. Novikov; S. I. Adian. Infinite periodic groups. I. Izvestiya. Mathematics , Tome 2 (1968) no. 1, pp. 209-236. http://geodesic.mathdoc.fr/item/IM2_1968_2_1_a9/