Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1968_2_1_a6, author = {A. F. Lavrik}, title = {Approximate functional equations for {Dirichlet} functions}, journal = {Izvestiya. Mathematics }, pages = {129--179}, publisher = {mathdoc}, volume = {2}, number = {1}, year = {1968}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_1_a6/} }
A. F. Lavrik. Approximate functional equations for Dirichlet functions. Izvestiya. Mathematics , Tome 2 (1968) no. 1, pp. 129-179. http://geodesic.mathdoc.fr/item/IM2_1968_2_1_a6/
[1] Hardy G. H., Littlewood J. E., “The zeros of Riemann's zeta-function on the critical line”, Math. Z., 10 (1921), 238–317 | DOI | MR
[2] Hardy G. H., Littlewood J. E., “The approximate functional equation in the theory of the zeta-function with applications to the divisors problems of Dirichlet and Piltz”, Proc. London Math. Soc. (2), 21 (1922), 39–74 | DOI
[3] Hardy G. H., Littlewood J. E., “The approximate functional equation for $\zeta(s)$ and $\zeta^2(s)$”, Proc. London Math. Soc. (2), 29 (1929), 81–97 | DOI | Zbl
[4] Siege1 G. L., “Über Riemann Nachlass zur analytische Zahlentheorie”, Quellen und Studien zur Geschichte der Math. Astron. und Phys. (B), 2 (1932), 45–80 | Zbl
[5] Titchmarch E. G., “The approximate functional equation for $\zeta^2(s)$”, Quart. J. Math.(Oxford), 9 (1938), 109–114 | DOI
[6] Kuzmin R. O., “O kornyakh ryadov Dirikhle”, Izv. OMEN, ser. matem., 1934, 1471–1491
[7] Suetuna Z., “The zeros of the $L$-functions on the critical line”, Tohoku Math. J., 29 (1925), 313–331
[8] Suetuna Z., “Über die approximative Funktionalgleichung für Dirchletische $L$-Funktionen”, Japan. J. Math., 9 (1932), 111–116 | Zbl
[9] Wilton, “An approximate functional equation for the product of two $\zeta$-functions”, Proc. London Math. Soc. (2), 31 (1930), 11–107 | DOI
[10] Ĉudakov H. G., “On Goldbach–Vinogradov theorem”, Ann. Math., 2:48 (1947), 515–545 | MR
[11] Potter H. S., “Approximative equations for the Epstein zeta-function”, Proc. London Math. Soc. (2), 1934, 501–515 | DOI | Zbl
[12] Wiebelitz R., “Über approximativ Funktionalgleichung der potensen der Riemannshe Funktion-zeta”, Nachr. Gessel. Wiss. Göttingen, 6 (1952), 263–270 | MR | Zbl
[13] Tatuzawa T., “The approximate functional equation for Dirichet $L$-series”, Japan. J. Math, 32 (1952), 19–25 | MR
[14] Fischer W., “"Uber die Zeta-function des rell-quadratischen Zahlkörpers”, Math. Z., 57:1 (1952), 94–115 | DOI | MR | Zbl
[15] Apostol T., Sklar A., “The approximative functional of Hecke's Dirichlet series”, Trans. Amer. Math. Soc., 86 (1957), 446–462 | DOI | MR | Zbl
[16] Gelfond A. O., “O nekotorykh funktsionalnykh uravneniyakh, yavlyayuschikhsya sledstviem uravnenii tipa Rimana”, Izv. AN SSSR. Ser. matem., 24 (1960), 469–474 | MR
[17] Linnik Yu. V., “Asimptoticheskaya formula v additivnoi probleme Gardi–Littlvuda”, Izv. AN SSSR. Ser. matem., 24 (1960), 629–706 | MR | Zbl
[18] Linnik Yu. V., “Vse bolshie chisla - summy prostogo i dvukh kvadratov (O probleme Gardi–Littlvuda). II”, Matem. sb., 53(95) (1961), 3–37 | MR | Zbl
[19] Chandrasekharan K., Narasimhan R., “Functional equations with multiple gamma factors and the average order of arithmetical functions”, Ann. Math., 76:1 (1962), 91–136 | DOI | MR
[20] Chandrasekharan K., Narasimhan R., “The approximate functional equation for class of zeta-functions”, Math. Ann., 152 (1963), 30–64 | DOI | MR | Zbl
[21] Bulota K., “Priblizhennoe funktsionalnoe uravnenie $z$-funktsii Gekke mnimogo kvadratichnogo polya”, Litovskii matem. sb., 11:2 (1962), 39–82 | MR
[22] Lavrik A. F., “O funktsionalnykh uravneniyakh funktsii Dirikhle”, Izv. AN SSSR. Ser. matem., 31 (1967), 431–442 | MR | Zbl
[23] Lavrik A. F., “Funktsionalnoe uravnenie $L$-funktsii Dirikhle i zadacha delitelei v arifmeticheskikh progressiyakh”, Izv. AN SSSR. Ser. matem., 30 (1966), 433–448 | MR | Zbl
[24] Lavrik A. F., “Priblizhennoe funktsionalnoe uravnenie dzeta-funktsii Gekke mnimogo kvadratichnogo polya”, Matematicheskie zametki, 2:5 (1967), 475–482 | MR | Zbl
[25] Lavrik A. F., “O priblizhennom funktsionalnom uravnenii $L$-funktsii Dirikhle”, Tr. Mosk. matem. ob-va, 18