The analysis of irreducibility in the class of elementary representations of a complex semisimple Lie group
Izvestiya. Mathematics , Tome 2 (1968) no. 1, pp. 105-128
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the class of “elementary” representations for a complex semisimple Lie group, obtained by analytic continuation from the Gel'fand–Na\u{i}mark “fundamental series”. We establish necessary and sufficient conditions for the irreducibility of these representations. Here the term “irreducibility” is to be understood to mean both topological irreducibility and complete irreducibility in the sense of R. Godement.
@article{IM2_1968_2_1_a5,
author = {D. P. Zhelobenko},
title = {The analysis of irreducibility in the class of elementary representations of a complex semisimple {Lie} group},
journal = {Izvestiya. Mathematics },
pages = {105--128},
publisher = {mathdoc},
volume = {2},
number = {1},
year = {1968},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_1_a5/}
}
TY - JOUR AU - D. P. Zhelobenko TI - The analysis of irreducibility in the class of elementary representations of a complex semisimple Lie group JO - Izvestiya. Mathematics PY - 1968 SP - 105 EP - 128 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1968_2_1_a5/ LA - en ID - IM2_1968_2_1_a5 ER -
D. P. Zhelobenko. The analysis of irreducibility in the class of elementary representations of a complex semisimple Lie group. Izvestiya. Mathematics , Tome 2 (1968) no. 1, pp. 105-128. http://geodesic.mathdoc.fr/item/IM2_1968_2_1_a5/