The analysis of irreducibility in the class of elementary representations of a complex semisimple Lie group
Izvestiya. Mathematics , Tome 2 (1968) no. 1, pp. 105-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the class of “elementary” representations for a complex semisimple Lie group, obtained by analytic continuation from the Gel'fand–Na\u{i}mark “fundamental series”. We establish necessary and sufficient conditions for the irreducibility of these representations. Here the term “irreducibility” is to be understood to mean both topological irreducibility and complete irreducibility in the sense of R. Godement.
@article{IM2_1968_2_1_a5,
     author = {D. P. Zhelobenko},
     title = {The analysis of irreducibility in the class of elementary representations of a complex semisimple {Lie} group},
     journal = {Izvestiya. Mathematics },
     pages = {105--128},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {1968},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_1_a5/}
}
TY  - JOUR
AU  - D. P. Zhelobenko
TI  - The analysis of irreducibility in the class of elementary representations of a complex semisimple Lie group
JO  - Izvestiya. Mathematics 
PY  - 1968
SP  - 105
EP  - 128
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1968_2_1_a5/
LA  - en
ID  - IM2_1968_2_1_a5
ER  - 
%0 Journal Article
%A D. P. Zhelobenko
%T The analysis of irreducibility in the class of elementary representations of a complex semisimple Lie group
%J Izvestiya. Mathematics 
%D 1968
%P 105-128
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1968_2_1_a5/
%G en
%F IM2_1968_2_1_a5
D. P. Zhelobenko. The analysis of irreducibility in the class of elementary representations of a complex semisimple Lie group. Izvestiya. Mathematics , Tome 2 (1968) no. 1, pp. 105-128. http://geodesic.mathdoc.fr/item/IM2_1968_2_1_a5/

[1] Berezin F. A., “Operatory Laplasa na poluprostykh gruppakh Li”, Tr. Mosk. matem. ob-va, 6 (1957), 371–463 | MR | Zbl

[2] Burbaki N., Topologicheskie vektornye prostranstva, IL, M., 1959

[3] Gelfand I. M., Graev M. I., Vilenkin N. Ya., Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Obobschennye funktsii, 5, Fizmatgiz, M., 1962

[4] Gelfand I. M., Naimark M. A., Unitarnye predstavleniya klassicheskikh grupp, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 36, 1950 | MR | Zbl

[5] Zhelobenko D. P., “Simmetriya v klasse elementarnykh predstavlenii poluprostoi gruppy Li”, Funktsionalnyi analiz i ego prilozheniya, 1:2 (1967), 15–38 | MR

[6] Zhelobenko D. P., “K teorii lineinykh predstavlenii kompleksnykh i veschestvennykh grupp Li”, Tr. Mosk. matem. ob-va, 12, 1963, 53–98

[7] Zhelobenko D. P., “Struktura elementarnykh predstavlenii poluprostoi kompleksnoi gruppy Li”, Dokl. AN SSSR, 170:5 (1966), 1009–1012 | Zbl

[8] Zhelobenko D. P., “Operatornoe ischislenie i teoremy tipa Peli–Vinera dlya poluprostoi kompleksnoi gruppy Li”, Dokl. AN SSSR, 170:6 (1966), 1243–1246

[9] Zhelobenko D. P., Naimark M. A., “Opisanie vpolne neprivodimykh predstavlenii poluprostoi kompleksnoi gruppy Li”, Dokl. AN SSSR, 171:1 (1966), 25–28 | MR | Zbl

[10] Zhelobenko D. P., “Analog teorii Kartana–Veilya dlya beskonechnomernykh predstavlenii poluprostoi kompleksnoi gruppy Li”, Dokl. AN SSSR, 175:1 (1967), 24–27

[11] Zhelobenko D. P., “O beskonechno differentsiruemykh vektorakh v teorii predstavlenii”, Vestn. Mosk. un-ta, 1965, no. 1, 3–10

[12] Teoriya algebr Li. Topologiya grupp Li, Tr. seminara “Sofus Li”, ML, M., 1962

[13] Bruhat F., “Sur les representations induites cles groupes de Lie”, Bull. Soc. Math. France, 34 (1956), 97–205 | MR

[14] Godement R., “A theory of spherical functions. I”, Trans Amer. Math. Soc., 73:3 (1952), 496–556 | DOI | MR | Zbl

[15] Helgason S., “Some results of invariant theory”, Bull. Amer. Math. Soc., 68:4 (1962), 367–371 | DOI | MR | Zbl

[16] Helgason S., “Invariants and fundamental functions”, Acta Math., 109:3 (1963), 241–258 | DOI | MR | Zbl

[17] Konstant B., “Lie group representations on polynomial rings”, Amer. J. Math., 85 (1963), 327–404 | DOI | MR

[18] Parthasarathy K. R., Ranga Rao R., Varadarajan V. S., “Representations of complex semisimple Lie groups and Lie algebras”, Ann. Math., 85:3 (1967), 383–429 | DOI | MR | Zbl