On the convergence of conjugate Fourier series
Izvestiya. Mathematics , Tome 2 (1968) no. 1, pp. 47-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the convergence of the series which is conjugate to the Fourier series of a function $f(x)$, when the measure of the continuity of $f(x)$ is given in the mean.
@article{IM2_1968_2_1_a2,
     author = {M. A. Subkhankulov},
     title = {On the convergence of conjugate {Fourier} series},
     journal = {Izvestiya. Mathematics },
     pages = {47--59},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {1968},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_1_a2/}
}
TY  - JOUR
AU  - M. A. Subkhankulov
TI  - On the convergence of conjugate Fourier series
JO  - Izvestiya. Mathematics 
PY  - 1968
SP  - 47
EP  - 59
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1968_2_1_a2/
LA  - en
ID  - IM2_1968_2_1_a2
ER  - 
%0 Journal Article
%A M. A. Subkhankulov
%T On the convergence of conjugate Fourier series
%J Izvestiya. Mathematics 
%D 1968
%P 47-59
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1968_2_1_a2/
%G en
%F IM2_1968_2_1_a2
M. A. Subkhankulov. On the convergence of conjugate Fourier series. Izvestiya. Mathematics , Tome 2 (1968) no. 1, pp. 47-59. http://geodesic.mathdoc.fr/item/IM2_1968_2_1_a2/

[1] Plesner B., “O sopryazhennykh trigonometricheskikh ryadakh”, Dokl. AN SSSR, 4 (1935), 235–238

[2] Subkhankulov M. A., “Tauberovy teoremy s ostatochnym chlenom”, Matem. sb., 52(94):3 (1960), 823–846 | Zbl

[3] Riesz M., “Sur les fonctions conjuguées”, Math. Z., 27 (1927), 218–244 | DOI | MR | Zbl

[4] Stechkin S. B., “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. matem., 15 (1951), 219–242 | Zbl

[5] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. Mosk. matem. ob-va, 5 (1956), 483–522 | MR | Zbl

[6] Bari N. K., Trigonometricheskie ryady, Fizmatlit, M., 1961 | MR