Generalized Cauchy problem for an ultraparabolic equation
Izvestiya. Mathematics , Tome 1 (1967) no. 6, pp. 1285-1303

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish that the Cauchy problem (classical and generalized) for an ultraparabolic equation with constant coefficients and with an initial condition on any piecewise smooth admissible surface is correctly formulated. We obtain an “integral” representation of the solution.
@article{IM2_1967_1_6_a8,
     author = {V. S. Vladimirov and Yu. N. Drozhzhinov},
     title = {Generalized {Cauchy} problem for an ultraparabolic equation},
     journal = {Izvestiya. Mathematics },
     pages = {1285--1303},
     publisher = {mathdoc},
     volume = {1},
     number = {6},
     year = {1967},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a8/}
}
TY  - JOUR
AU  - V. S. Vladimirov
AU  - Yu. N. Drozhzhinov
TI  - Generalized Cauchy problem for an ultraparabolic equation
JO  - Izvestiya. Mathematics 
PY  - 1967
SP  - 1285
EP  - 1303
VL  - 1
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a8/
LA  - en
ID  - IM2_1967_1_6_a8
ER  - 
%0 Journal Article
%A V. S. Vladimirov
%A Yu. N. Drozhzhinov
%T Generalized Cauchy problem for an ultraparabolic equation
%J Izvestiya. Mathematics 
%D 1967
%P 1285-1303
%V 1
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a8/
%G en
%F IM2_1967_1_6_a8
V. S. Vladimirov; Yu. N. Drozhzhinov. Generalized Cauchy problem for an ultraparabolic equation. Izvestiya. Mathematics , Tome 1 (1967) no. 6, pp. 1285-1303. http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a8/