Points of finite order on elliptic curves
Izvestiya. Mathematics , Tome 1 (1967) no. 6, pp. 1271-1284.

Voir la notice de l'article provenant de la source Math-Net.Ru

A number of properties are proved for points of finite order of elliptic curves which are rational over a field of algebraic numbers of finite degree.
@article{IM2_1967_1_6_a7,
     author = {V. A. Dem'yanenko},
     title = {Points of finite order on elliptic curves},
     journal = {Izvestiya. Mathematics },
     pages = {1271--1284},
     publisher = {mathdoc},
     volume = {1},
     number = {6},
     year = {1967},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a7/}
}
TY  - JOUR
AU  - V. A. Dem'yanenko
TI  - Points of finite order on elliptic curves
JO  - Izvestiya. Mathematics 
PY  - 1967
SP  - 1271
EP  - 1284
VL  - 1
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a7/
LA  - en
ID  - IM2_1967_1_6_a7
ER  - 
%0 Journal Article
%A V. A. Dem'yanenko
%T Points of finite order on elliptic curves
%J Izvestiya. Mathematics 
%D 1967
%P 1271-1284
%V 1
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a7/
%G en
%F IM2_1967_1_6_a7
V. A. Dem'yanenko. Points of finite order on elliptic curves. Izvestiya. Mathematics , Tome 1 (1967) no. 6, pp. 1271-1284. http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a7/

[1] Manin Yu. I., “Vysota Teita tochek na abelevom mnogoobrazii, ee varianty i prilozheniya”, Izv. AN SSSR. Ser. matem., 28 (1964), 1363–1390 | MR

[2] Gekke E., Lektsii po teorii algebraicheskikh chisel, GITTL, M., 1940

[3] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1964 | MR