The imbedding of certain classes of functions
Izvestiya. Mathematics , Tome 1 (1967) no. 6, pp. 1255-1270

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions on the modulus of continuity $\omega(\delta)$ are found such that the inclusion $\psi(x)\in H_p^\omega$, $p\in[1,\infty)$ should imply $\psi(x)\sim\psi^*(x)\in H_p^\omega(L^\infty=C)$; sufficient conditions on $\omega(\delta)$ are also found such that $\psi(x)\in H_p^\omega$, $p\in[1,\infty)$, should imply $\psi(x)\in H_q^{\omega^*}$, $p$.
@article{IM2_1967_1_6_a6,
     author = {V. A. Andrienko},
     title = {The imbedding of certain classes of functions},
     journal = {Izvestiya. Mathematics },
     pages = {1255--1270},
     publisher = {mathdoc},
     volume = {1},
     number = {6},
     year = {1967},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a6/}
}
TY  - JOUR
AU  - V. A. Andrienko
TI  - The imbedding of certain classes of functions
JO  - Izvestiya. Mathematics 
PY  - 1967
SP  - 1255
EP  - 1270
VL  - 1
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a6/
LA  - en
ID  - IM2_1967_1_6_a6
ER  - 
%0 Journal Article
%A V. A. Andrienko
%T The imbedding of certain classes of functions
%J Izvestiya. Mathematics 
%D 1967
%P 1255-1270
%V 1
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a6/
%G en
%F IM2_1967_1_6_a6
V. A. Andrienko. The imbedding of certain classes of functions. Izvestiya. Mathematics , Tome 1 (1967) no. 6, pp. 1255-1270. http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a6/