The imbedding of certain classes of functions
Izvestiya. Mathematics , Tome 1 (1967) no. 6, pp. 1255-1270
Voir la notice de l'article provenant de la source Math-Net.Ru
Necessary and sufficient conditions on the modulus of continuity $\omega(\delta)$ are found such that the inclusion $\psi(x)\in H_p^\omega$, $p\in[1,\infty)$ should imply $\psi(x)\sim\psi^*(x)\in H_p^\omega(L^\infty=C)$; sufficient conditions on $\omega(\delta)$ are also found such that $\psi(x)\in H_p^\omega$, $p\in[1,\infty)$, should imply $\psi(x)\in H_q^{\omega^*}$, $p$.
@article{IM2_1967_1_6_a6,
author = {V. A. Andrienko},
title = {The imbedding of certain classes of functions},
journal = {Izvestiya. Mathematics },
pages = {1255--1270},
publisher = {mathdoc},
volume = {1},
number = {6},
year = {1967},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a6/}
}
V. A. Andrienko. The imbedding of certain classes of functions. Izvestiya. Mathematics , Tome 1 (1967) no. 6, pp. 1255-1270. http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a6/