Geometries over the algebra of antioctaves
Izvestiya. Mathematics , Tome 1 (1967) no. 6, pp. 1209-1216
Voir la notice de l'article provenant de la source Math-Net.Ru
We give a rigorous construction for a projective and a noneuclidean geometry over the alternative algebra of antioctaves (split octaves). This construction generalizes Freudenthal's definition of the projective plane over the algebra of octaves (Cayley numbers). It is proved that the groups of automorphisms of the projective and the noneuclidean plane are simple noncompact Lie groups of types $E_6$ and $F_4$, respectively.
@article{IM2_1967_1_6_a3,
author = {D. B. Persitc},
title = {Geometries over the algebra of antioctaves},
journal = {Izvestiya. Mathematics },
pages = {1209--1216},
publisher = {mathdoc},
volume = {1},
number = {6},
year = {1967},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a3/}
}
D. B. Persitc. Geometries over the algebra of antioctaves. Izvestiya. Mathematics , Tome 1 (1967) no. 6, pp. 1209-1216. http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a3/