Geometries over the algebra of antioctaves
Izvestiya. Mathematics , Tome 1 (1967) no. 6, pp. 1209-1216.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a rigorous construction for a projective and a noneuclidean geometry over the alternative algebra of antioctaves (split octaves). This construction generalizes Freudenthal's definition of the projective plane over the algebra of octaves (Cayley numbers). It is proved that the groups of automorphisms of the projective and the noneuclidean plane are simple noncompact Lie groups of types $E_6$ and $F_4$, respectively.
@article{IM2_1967_1_6_a3,
     author = {D. B. Persitc},
     title = {Geometries over the algebra of antioctaves},
     journal = {Izvestiya. Mathematics },
     pages = {1209--1216},
     publisher = {mathdoc},
     volume = {1},
     number = {6},
     year = {1967},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a3/}
}
TY  - JOUR
AU  - D. B. Persitc
TI  - Geometries over the algebra of antioctaves
JO  - Izvestiya. Mathematics 
PY  - 1967
SP  - 1209
EP  - 1216
VL  - 1
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a3/
LA  - en
ID  - IM2_1967_1_6_a3
ER  - 
%0 Journal Article
%A D. B. Persitc
%T Geometries over the algebra of antioctaves
%J Izvestiya. Mathematics 
%D 1967
%P 1209-1216
%V 1
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a3/
%G en
%F IM2_1967_1_6_a3
D. B. Persitc. Geometries over the algebra of antioctaves. Izvestiya. Mathematics , Tome 1 (1967) no. 6, pp. 1209-1216. http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a3/

[1] Freidental G., “Oktavy, osobye gruppy i oktavnaya geometriya”, Matematika, 1:1 (1957), 117–153

[2] Springer T. A., Veldkamp F. D., “Elliptic and hyperbolic octave planes”, Indagationes math., 25 (1963), 413–451 | MR

[3] Yaglom I. M., Kompleksnye chisla, M., 1963

[4] Rozenfeld B. A., Neevklidovy geometrii, M., 1955 | MR

[5] Rozenfeld B. A., “Interpretatsiya simmetricheskikh prostranstv s prostymi fundamentalnymi gruppami v vide mnogoobrazii obrazov simmetrii”, Uch. zap. Kolomensk. ped. in-ta, II (1958), 19–37 | MR

[6] Jacobson N., “Composition algebras and their automorphisms”, Rend. Circolo mat. Palermo, II:7 (1958), 55–80 | DOI | MR | Zbl

[7] Jacobson N., “Some groups of transformations defined by Jordan algebras. I”, J. reine und angew. Math., 201 (1959), 178–195 ; “II”, 204 (1960), 74–98 ; “III”, 207 (1961), 61–85 | MR | Zbl | MR | Zbl | MR | Zbl

[8] Persits D. B., “Geometrii nad vyrozhdennymi oktavami”, Dokl. AN SSSR, 173:5 (1967), 1010–1013 | Zbl