On hereditary and bass orders
Izvestiya. Mathematics , Tome 1 (1967) no. 6, pp. 1357-1375
Voir la notice de l'article provenant de la source Math-Net.Ru
A criterion is given for orders over Dedekind rings to be hereditary. It is proved that every finitely generated torsionfree module over a Bass order, i.e., an order of which every superring has injective dimension one, splits into a direct sum of ideals. A local description of Bass orders is presented.
@article{IM2_1967_1_6_a12,
author = {Yu. A. Drozd and V. V. Kirichenko and A. V. Roiter},
title = {On hereditary and bass orders},
journal = {Izvestiya. Mathematics },
pages = {1357--1375},
publisher = {mathdoc},
volume = {1},
number = {6},
year = {1967},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a12/}
}
Yu. A. Drozd; V. V. Kirichenko; A. V. Roiter. On hereditary and bass orders. Izvestiya. Mathematics , Tome 1 (1967) no. 6, pp. 1357-1375. http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a12/