Resolution theorems for compact complex spaces with a sufficiently
Izvestiya. Mathematics , Tome 1 (1967) no. 6, pp. 1331-1356.

Voir la notice de l'article provenant de la source Math-Net.Ru

The “Chow lemma” and theorems on the resolution of singularities and of the points of indeterminacy of meromorphic mappings are proved for n-dimensional compact complex spaces with n algebraically independent meromorphic functions. It is established that any such space may be made into a projective algebraic variety by a finite number of monoidal transformations with nonsingular centers.
@article{IM2_1967_1_6_a11,
     author = {B. G. Moishezon},
     title = {Resolution theorems for compact complex spaces with a sufficiently},
     journal = {Izvestiya. Mathematics },
     pages = {1331--1356},
     publisher = {mathdoc},
     volume = {1},
     number = {6},
     year = {1967},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a11/}
}
TY  - JOUR
AU  - B. G. Moishezon
TI  - Resolution theorems for compact complex spaces with a sufficiently
JO  - Izvestiya. Mathematics 
PY  - 1967
SP  - 1331
EP  - 1356
VL  - 1
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a11/
LA  - en
ID  - IM2_1967_1_6_a11
ER  - 
%0 Journal Article
%A B. G. Moishezon
%T Resolution theorems for compact complex spaces with a sufficiently
%J Izvestiya. Mathematics 
%D 1967
%P 1331-1356
%V 1
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a11/
%G en
%F IM2_1967_1_6_a11
B. G. Moishezon. Resolution theorems for compact complex spaces with a sufficiently. Izvestiya. Mathematics , Tome 1 (1967) no. 6, pp. 1331-1356. http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a11/

[1] Moishezon B. G., “Ob $n$-mernykh kompaktnykh kompleksnykh mnogoobraziyakh, imeyuschikh $n$ algebraicheski nezavisimykh meromorfnykh funktsii. I”, Izv. AN SSSR. Ser. mat., 30 (1966), 133–174

[2] Hironaka H., “Resolution of singularities of an algebraic variety over a field of characteristic zero”, Ann. Math., 79 (1964), 109–326 | DOI | MR | Zbl

[3] Hironaka H., “A fundamental lemma on point modifications”, Proc. Gonf. Complex Analysis (Minneapolis, 1964), Springer, Berlin, 1965, 194–215 | MR

[4] Hironaka H., Rossi H., “On the equivalence of imbeddings of exceptional complex spaces”, Math. Ann., 156:4 (1964), 313–333 | DOI | MR | Zbl

[5] Grauert H., “Über Modifikationen und exeptionelle analytische Mengen”, Math. Ann., 146 (1962), 331–368 | DOI | MR

[6] Grauert H., “Ein Theorem der Analytischen Garbentheorie und die Modulräume Komplexer Strukturen”, Inst. Hautes Etudes, Publ. Math., 1960, no. 5, 233–292 | MR