Resolution theorems for compact complex spaces with a sufficiently
Izvestiya. Mathematics , Tome 1 (1967) no. 6, pp. 1331-1356
Voir la notice de l'article provenant de la source Math-Net.Ru
The “Chow lemma” and theorems on the resolution of singularities and of the points of indeterminacy of meromorphic mappings are proved for n-dimensional compact complex spaces with n algebraically independent meromorphic functions. It is established that any such space may be made into a projective algebraic variety by a finite number of monoidal transformations with nonsingular centers.
@article{IM2_1967_1_6_a11,
author = {B. G. Moishezon},
title = {Resolution theorems for compact complex spaces with a sufficiently},
journal = {Izvestiya. Mathematics },
pages = {1331--1356},
publisher = {mathdoc},
volume = {1},
number = {6},
year = {1967},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a11/}
}
B. G. Moishezon. Resolution theorems for compact complex spaces with a sufficiently. Izvestiya. Mathematics , Tome 1 (1967) no. 6, pp. 1331-1356. http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a11/