Realizable partial multiplications in linear lattices
Izvestiya. Mathematics , Tome 1 (1967) no. 6, pp. 1153-1176.

Voir la notice de l'article provenant de la source Math-Net.Ru

Partial multiplication operations in linear lattices are studied. In particular, abstract characterizations of realizable partial multiplications are given. Some of the results have been presented without proofs in § 1 of $({}^4)$.
@article{IM2_1967_1_6_a0,
     author = {A. I. Veksler},
     title = {Realizable partial multiplications in linear lattices},
     journal = {Izvestiya. Mathematics },
     pages = {1153--1176},
     publisher = {mathdoc},
     volume = {1},
     number = {6},
     year = {1967},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a0/}
}
TY  - JOUR
AU  - A. I. Veksler
TI  - Realizable partial multiplications in linear lattices
JO  - Izvestiya. Mathematics 
PY  - 1967
SP  - 1153
EP  - 1176
VL  - 1
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a0/
LA  - en
ID  - IM2_1967_1_6_a0
ER  - 
%0 Journal Article
%A A. I. Veksler
%T Realizable partial multiplications in linear lattices
%J Izvestiya. Mathematics 
%D 1967
%P 1153-1176
%V 1
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a0/
%G en
%F IM2_1967_1_6_a0
A. I. Veksler. Realizable partial multiplications in linear lattices. Izvestiya. Mathematics , Tome 1 (1967) no. 6, pp. 1153-1176. http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a0/

[1] Amemiya J., “A general spectral theory in semi-ordered linear spaces”, J. Fac. Sci. Hokkaido Univ., Math., 12:3 (1953), 111–156 | MR | Zbl

[2] Birkhoff G., Pierce R. S., “Lattice-ordered rings”, Anais Acad. Brasil. ciênc, 28:1 (1956), 41–69 | MR | Zbl

[3] Veksler A. I., “O realizatsiyakh arkhimedovykh $K$-linealov”, Sib. matem. zh., 3:1 (1962), 7–16 | MR | Zbl

[4] Vekeler A. I., “Operatsii chastichnogo umnozheniya v vektornykh strukturakh”, Dokl. AN SSSR, 158:4 (1964), 759–762

[5] Vulikh B. Z., “Opredelenie proizvedeniya v lineinom poluuporyadochennom prostranstve”, Dokl. AN SSSR, 26:9 (1940), 847–851

[6] Bylikh B. Z., “Svoistva proizvedeniya i obratnogo elementa v lineinykh poluuporyadochennykh prostranstvakh”, Dokl. AN SSSR, 26:9 (1940), 852–856

[7] Vulikh B. Z., “Proizvedenie v lineinykh poluuporyadochennykh prostranstvakh i ego primenenie k teorii operatsii. I”, Matem. sb., 22:1 (1948), 27–78

[8] Vulikh B. Z., “Proizvedenie v lineinykh poluuporyadochennykh prostranstvakh i ego primenenie k teorii operatsii. II”, Matem. sb., 22:2 (1948), 267–317

[9] Bylikh B. Z., “Obobschennye poluuporyadochennye koltsa”, Matem. sb., 33:2 (1953), 343–358 | MR

[10] Bylikh B. Z., “Kharakteristicheskie svoistva proizvedeniya v lineinykh poluuporyadochennykh prostranstvakh”, Uch. zap. Leningr. gos. ped. in-ta im. A. I. Gertsena, 89 (1953), 3–8

[11] Bylikh B. Z., “O svoistve vnutrennei normalnosti obobschennykh poluuporyadochennykh kolets”, Uch. zap. Leningr. gos. ped. in-ta im. A. I. Gertsena, 166 (1958), 3–15

[12] Vulikh B. Z., “O rasprostranenii nepreryvnykh funktsii v topologicheskikh prostranstvakh”, Matem. sb., 30:1 (1952), 167–170

[13] Bylikh B. Z., Vvedenie v teoriyu poluuporyadochennykh prostranstv, Fizmatgiz, Moskva, 1961

[14] Gleason A. M., “Projective topological spaces”, Illinois J. Math., 2:4A (1958), 482–489 | MR | Zbl

[15] Johnson D. G., “On a representation theory for a class of archimedean lattice-ordered rings”, Proc. London Math. Soc., 12:46 (1962), 207–225 | DOI | MR | Zbl

[16] Domracheva G. I., Obobschennye poluuporyadochennye koltsa i ikh idealy, Dissertatsiya, Leningr. gos. ped. in-t im. A. I. Gertsena, 1955

[17] Kist J., “Representations of archimedean function rings”, Illinois J. Math., 7:2 (1963), 269–278 | MR | Zbl

[18] Krein M. G., Krein S. G., “O prostranstve nepreryvnykh funktsii, opredelennykh na bikompakte, i ego poluuporyadochennykh prostranstvakh”, Matem. sb., 13:1 (1943), 1–38 | MR | Zbl

[19] Nakano H., Modern spectral theory, Maruzen Co., Tokyo, 1950 | MR

[20] Ponomarev V. I., “O parakompaktnykh prostranstvakh i ikh nepreryvnykh otobrazheniyakh”, Dokl. AN SSSR, 143:1 (1962), 46–49 | MR | Zbl

[21] Freudental H., “Teilweise geordnete Moduln”, Proc. Acad. Amsterdam, 39 (1936), 641–651