A geometrical conjecture of Banach
Izvestiya. Mathematics , Tome 1 (1967) no. 5, pp. 1055-1064
Voir la notice de l'article provenant de la source Math-Net.Ru
This article is devoted to the following problem of Banach: Let $B^n$ be a Banach space of finite or infinite dimension $n$ and let $k$ be a natural number satisfying the inequalities $1$; if all the $k$-dimensional subspaces of $B^n$ are isometric to each other, is $B^n$ a Hilbert space? We give a positive answer to this question under certain restrictions on $k$ and $n$.
@article{IM2_1967_1_5_a7,
author = {M. L. Gromov},
title = {A geometrical conjecture of {Banach}},
journal = {Izvestiya. Mathematics },
pages = {1055--1064},
publisher = {mathdoc},
volume = {1},
number = {5},
year = {1967},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_5_a7/}
}
M. L. Gromov. A geometrical conjecture of Banach. Izvestiya. Mathematics , Tome 1 (1967) no. 5, pp. 1055-1064. http://geodesic.mathdoc.fr/item/IM2_1967_1_5_a7/