A geometrical conjecture of Banach
Izvestiya. Mathematics , Tome 1 (1967) no. 5, pp. 1055-1064

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is devoted to the following problem of Banach: Let $B^n$ be a Banach space of finite or infinite dimension $n$ and let $k$ be a natural number satisfying the inequalities $1$; if all the $k$-dimensional subspaces of $B^n$ are isometric to each other, is $B^n$ a Hilbert space? We give a positive answer to this question under certain restrictions on $k$ and $n$.
@article{IM2_1967_1_5_a7,
     author = {M. L. Gromov},
     title = {A geometrical conjecture of {Banach}},
     journal = {Izvestiya. Mathematics },
     pages = {1055--1064},
     publisher = {mathdoc},
     volume = {1},
     number = {5},
     year = {1967},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_5_a7/}
}
TY  - JOUR
AU  - M. L. Gromov
TI  - A geometrical conjecture of Banach
JO  - Izvestiya. Mathematics 
PY  - 1967
SP  - 1055
EP  - 1064
VL  - 1
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1967_1_5_a7/
LA  - en
ID  - IM2_1967_1_5_a7
ER  - 
%0 Journal Article
%A M. L. Gromov
%T A geometrical conjecture of Banach
%J Izvestiya. Mathematics 
%D 1967
%P 1055-1064
%V 1
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1967_1_5_a7/
%G en
%F IM2_1967_1_5_a7
M. L. Gromov. A geometrical conjecture of Banach. Izvestiya. Mathematics , Tome 1 (1967) no. 5, pp. 1055-1064. http://geodesic.mathdoc.fr/item/IM2_1967_1_5_a7/