On an invariant of open manifolds
Izvestiya. Mathematics , Tome 1 (1967) no. 5, pp. 1041-1054
Voir la notice de l'article provenant de la source Math-Net.Ru
The combinatorial invariance of the obstruction $\Delta$ is proved and a Poincaré duality relation is derived for $\Delta$. It is shown that the invariant $\Delta$ is a meaningful concept, i.e., that there exist open manifolds for which $\Delta\ne0$. The results that are obtained are used for the construction of a boundary for an open manifold and for the fibering of a closed smooth manifold over a circle.
@article{IM2_1967_1_5_a6,
author = {V. L. Golo},
title = {On an invariant of open manifolds},
journal = {Izvestiya. Mathematics },
pages = {1041--1054},
publisher = {mathdoc},
volume = {1},
number = {5},
year = {1967},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_5_a6/}
}
V. L. Golo. On an invariant of open manifolds. Izvestiya. Mathematics , Tome 1 (1967) no. 5, pp. 1041-1054. http://geodesic.mathdoc.fr/item/IM2_1967_1_5_a6/