On an invariant of open manifolds
Izvestiya. Mathematics , Tome 1 (1967) no. 5, pp. 1041-1054

Voir la notice de l'article provenant de la source Math-Net.Ru

The combinatorial invariance of the obstruction $\Delta$ is proved and a Poincaré duality relation is derived for $\Delta$. It is shown that the invariant $\Delta$ is a meaningful concept, i.e., that there exist open manifolds for which $\Delta\ne0$. The results that are obtained are used for the construction of a boundary for an open manifold and for the fibering of a closed smooth manifold over a circle.
@article{IM2_1967_1_5_a6,
     author = {V. L. Golo},
     title = {On an invariant of open manifolds},
     journal = {Izvestiya. Mathematics },
     pages = {1041--1054},
     publisher = {mathdoc},
     volume = {1},
     number = {5},
     year = {1967},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_5_a6/}
}
TY  - JOUR
AU  - V. L. Golo
TI  - On an invariant of open manifolds
JO  - Izvestiya. Mathematics 
PY  - 1967
SP  - 1041
EP  - 1054
VL  - 1
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1967_1_5_a6/
LA  - en
ID  - IM2_1967_1_5_a6
ER  - 
%0 Journal Article
%A V. L. Golo
%T On an invariant of open manifolds
%J Izvestiya. Mathematics 
%D 1967
%P 1041-1054
%V 1
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1967_1_5_a6/
%G en
%F IM2_1967_1_5_a6
V. L. Golo. On an invariant of open manifolds. Izvestiya. Mathematics , Tome 1 (1967) no. 5, pp. 1041-1054. http://geodesic.mathdoc.fr/item/IM2_1967_1_5_a6/