The principle of locality in the theory of boundary-value problems
Izvestiya. Mathematics , Tome 1 (1967) no. 5, pp. 983-1010.

Voir la notice de l'article provenant de la source Math-Net.Ru

The principle of locality for partial differential equations is studied in the present article from a general point of view; this principle has already found important applications in the theory of elliptic and parabolic equations.
@article{IM2_1967_1_5_a4,
     author = {K. K. Golovkin},
     title = {The principle of locality in the theory of boundary-value problems},
     journal = {Izvestiya. Mathematics },
     pages = {983--1010},
     publisher = {mathdoc},
     volume = {1},
     number = {5},
     year = {1967},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_5_a4/}
}
TY  - JOUR
AU  - K. K. Golovkin
TI  - The principle of locality in the theory of boundary-value problems
JO  - Izvestiya. Mathematics 
PY  - 1967
SP  - 983
EP  - 1010
VL  - 1
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1967_1_5_a4/
LA  - en
ID  - IM2_1967_1_5_a4
ER  - 
%0 Journal Article
%A K. K. Golovkin
%T The principle of locality in the theory of boundary-value problems
%J Izvestiya. Mathematics 
%D 1967
%P 983-1010
%V 1
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1967_1_5_a4/
%G en
%F IM2_1967_1_5_a4
K. K. Golovkin. The principle of locality in the theory of boundary-value problems. Izvestiya. Mathematics , Tome 1 (1967) no. 5, pp. 983-1010. http://geodesic.mathdoc.fr/item/IM2_1967_1_5_a4/

[1] Shauder I., “Über lineare elliptische Differentialgleichungen zweite Ordnung”, Math. Z., 38 (1934), 257–282 | DOI | MR

[2] Douglis A., Nirenberg L., “Interior estimates for elliptic systems of partial differential equations”, Comm. Pure Appl. Math., 8 (1955), 503–538 | DOI | MR | Zbl

[3] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for solutions of elliptic equations satisfying general boundary conditions. I”, Comm. Pure Appl. Math., 12:4 (1959), 623–727 ; “II”, Comm. Pure Appl. Math., 17:1 (1964), 35–92 | DOI | MR | Zbl | DOI | MR | Zbl

[4] Slobodetskii A. N., “Otsenki reshenii ellipticheskikh i parabolicheskikh sistem”, Dokl. AN SSSR, 120:6 (1958), 468–471 | Zbl

[5] Friedman A., “Boundary estimates for second order parabolic equations and their applications”, J. Math. and Mech., 7:5 (1958), 771–792 | MR

[6] Dynin A. S., Ellipticheskie integro-differentsialnye operatory na mnogoobrazii, Kand. dissertatsiya, LGU, 1962

[7] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego tipa”, Uspekhi mat. nauk, 19:3 (1964), 53–161 | Zbl

[8] Browder F. E., “Estimates and existence theorems for elliptic boundary value problems”, Proc. Nat. Acad. Sci. USA, 45:3 (1959), 365–372 | DOI | MR | Zbl

[9] Browder F. E., “A priori estimates for solution of elliptic boundary value problems. I”, Indagationes Koninklojke Niderlandse Akademie van Webenschappen, 22 (1960), 145–152 ; “II”, 160–169 ; “III”, 23 (1961), 404–410 | MR | Zbl | MR

[10] Solonnikov V. A., “Apriornye otsenki dlya uravnenii vtorogo poryadka parabolicheskogo tipa”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 70, 1964, 133–212 | MR | Zbl

[11] Solonnikov V. A., “Ob obschikh kraevykh zadachakh dlya sistem, ellipticheskikh v smysle A. Daglisa–L. Nirenberga. I”, Izv. AN SSSR. Ser. matem., 28 (1964), 665–706 | MR

[12] Solonnikov V. A., “O kraevykh zadachakh dlya lineinykh parabolicheskikh sistem differentsialnykh uravnenii obschego vida”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 83, 1965, 3–163 | MR

[13] Volevich L. R., “Razreshimost kraevykh zadach dlya obschikh ellipticheskikh sistem”, Matem. sb., 68 (1965), 373–416 | Zbl

[14] Golovkin K. K., Solonnikov V. A., “Otsenki integralnykh operatorov v translyatsionno invariantnykh normakh”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 70, 1964, 47–58 ; Тр. Матем. ин-та им. В. А. Стеклова АН СССР, 92, 1966, 5–30 | MR | Zbl | MR

[15] Ladyzhenskaya O. A., Rivkind V. Ya., Uraltseva N. N., “O klassicheskoi razreshimosti zadach diffraktsii dlya uravnenii ellipticheskogo i parabolicheskogo tipov”, Dokl. AN SSSR, 158:3 (1964), 513–515 | Zbl

[16] Ilin V. P., “Nekotorye neravenstva v funktsionalnykh prostranstvakh i ikh primenenie k issledovaniyu skhodimosti variatsionnykh metodov”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, LIII, 1959, 64–127

[17] Golovkin K. K., “Ob ekvivalentnykh normirovkakh drobnykh prostranstv”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, LXVI, 1962, 364–383 | MR | Zbl

[18] Golovkin K. K., “Dva klassa neravenstv dlya dostatochno gladkikh funktsii $n$ peremennykh”, Dokl. AN SSSR, 138:1 (1961), 22–25 | MR | Zbl

[19] Golovkin K. K., “Teoremy vlozheniya dlya drobnykh prostranstv”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, LXX, 1964, 38–46 | MR | Zbl

[20] Nikolskii S. M., “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, XXXVIII, 1951, 244–278

[21] Ilin V. P., Solonnikov V. A., “O nekotorykh svoistvakh differentsiruemykh funktsii mnogikh peremennykh”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, LXVI, 1962, 205–226 | MR

[22] Golovkin K. K., Solonnikov V. A., “Teoremy vlozheniya dlya drobnykh prostranstv”, Dokl. AN SSSR, 143:4 (1962), 767–770 | MR | Zbl

[23] Golovkin K. K., “O priblizhenii funktsii v proizvolnykh normakh”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, LXX, 1964, 26–37 | MR

[24] Nikolskii S. M., “O teoremakh vlozheniya, prodolzheniya i priblizheniya differentsiruemykh funktsii mnogikh peremennykh”, Uspekhi matem. nauk, 16:5 (1961), 63–114 | MR

[25] Gelfand I. M., “Ob ellipticheskikh uravneniyakh”, Uspekhi matem. nauk, 15:3 (1960), 121–132 | MR