The solution of the first boundary-value problem for self-adjoint elliptic equations in the case of an unbounded region
Izvestiya. Mathematics , Tome 1 (1967) no. 5, pp. 1131-1151.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we solve the first boundary-value problem for a self-adjoint second order elliptic equation in the case of an unbounded region in a certain class of functions, which is defined in a natural way by the equation itself. Existence and uniqueness theorem are proved by means of a variational method.
@article{IM2_1967_1_5_a12,
     author = {L. D. Kudryavtsev},
     title = {The solution of the first boundary-value problem for self-adjoint elliptic equations in the case of an unbounded region},
     journal = {Izvestiya. Mathematics },
     pages = {1131--1151},
     publisher = {mathdoc},
     volume = {1},
     number = {5},
     year = {1967},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_5_a12/}
}
TY  - JOUR
AU  - L. D. Kudryavtsev
TI  - The solution of the first boundary-value problem for self-adjoint elliptic equations in the case of an unbounded region
JO  - Izvestiya. Mathematics 
PY  - 1967
SP  - 1131
EP  - 1151
VL  - 1
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1967_1_5_a12/
LA  - en
ID  - IM2_1967_1_5_a12
ER  - 
%0 Journal Article
%A L. D. Kudryavtsev
%T The solution of the first boundary-value problem for self-adjoint elliptic equations in the case of an unbounded region
%J Izvestiya. Mathematics 
%D 1967
%P 1131-1151
%V 1
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1967_1_5_a12/
%G en
%F IM2_1967_1_5_a12
L. D. Kudryavtsev. The solution of the first boundary-value problem for self-adjoint elliptic equations in the case of an unbounded region. Izvestiya. Mathematics , Tome 1 (1967) no. 5, pp. 1131-1151. http://geodesic.mathdoc.fr/item/IM2_1967_1_5_a12/

[1] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Leningrad, 1950

[2] Nikolskii S. M., “K zadache Dirikhle dlya kruga i poluprostranstva”, Matem. sb., 35(77) (1954), 247–256 | MR

[3] Kudryavtsev L. D., “Pryamye i obratnye teoremy vlozheniya. Prilozheniya k resheniyu variatsionnym metodom ellipticheskikh uravnenii”, Tr. Matem. in-ta AN SSSR, 55, 1959, 3–182 | MR | Zbl

[4] Lizorkin P. I., “Printsip Dirikhle dlya uravneniya Beltrami v prostranstve”, Dokl. AN SSSR, 134:4 (1960), 761–764 | MR | Zbl

[5] Slobodetskii L. N., “Obobschennye prostranstva S. L. Soboleva i ikh prilozhenie k kraevym zadacham dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uch. zap. Leningr. ped. in-ta im. Gertsena, 197, 1958, 54–112

[6] Kudryavtsev L. D., “Teoremy vlozheniya dlya funktsii, opredelennykh na neogranichennykh oblastyakh”, Dokl. AN SSSR, 153:3 (1963), 530–532 | Zbl

[7] Kudryavtsev L. D., “Teorema vlozheniya dlya klassov funktsii, opredelennykh na vsem prostranstve ili poluprostranstve. I”, Matem. sb., 69(111) (1966), 616–639 | MR | Zbl

[8] Kudryavtsev L. D., “Teoremy vlozheniya dlya klassov funktsii opredelennykh na vsem prostranstve ili poluprostranstve. II”, Matem. sb., 70(112) (1966), 3–35 | Zbl

[9] Palamodov V. P., “Ob usloviyakh na beskonechnosti, obespechivayuschikh korrektnuyu razreshimost nekotorogo klassa uravnenii vida $P(id/dx)u=f''$”, Dokl. AN SSSR, 129:4 (1959), 740–743 | MR | Zbl

[10] Paneyakh B. P., “O suschestvovanii i edinstvennosti resheniya $n$-metagarmonicheskogo uravneniya v neogranichennom prostranstve”, Vestn. MGU, ser. matem., mekh., astron., fiz., khim., 1959, no. 5, 123–135

[11] Oskolkov A. P., “O resheniyakh kraevykh zadach dlya lineinykh ellipticheskikh uravnenii v neogranichennoi oblasti”, Vestn. LGU, ser. matem., mekh., astron., 7:2 (1961), 38–50 | MR | Zbl

[12] Eidus D. M., “Nekotorye kraevye zadachi v beskonechnykh oblastyakh”, Izv. AN SSSR. Ser. matem., 27 (1963), 1055–1080 | MR

[13] Grushin V. V., “Ob usloviyakh tipa Zommerfelda dlya nekotorogo klassa differentsialnykh uravnenii v chastnykh proizvodnykh”, Matem. sb., 61(103) (1963), 147–174 | MR | Zbl

[14] Vainberg B. R., “Asimptoticheskoe predstavlenie fundamentalnykh reshenii gipoellipticheskikh uravnenii i zadacha vo vsem prostranstve s usloviem na beskonechnosti”, Dokl. AN SSSR, 145:1 (1962), 21–23 | MR | Zbl

[15] Kudryavtsev L. D., “O pervoi kraevoi zadache dlya ellipticheskikh uravnenii s koeffitsientami, ubyvayuschimi na beskonechnosti”, Sovetsko-amerikanskii simpozium po uravneniyam s chastnymi proizvodnymi, Novosibirsk, 1963 | Zbl

[16] Kudryavtsev L. D., “Variatsionnyi metod dlya neogranichennykh oblastei”, Dokl. AN SSSR, 157:1 (1964), 45–48 | MR | Zbl

[17] Kudryavtsev L. D., “Ob odnom integralnom neravenstve”, Nauchn. dokl. vysshei shkoly fiz.-mat. nauk, 1959, no. 3, 25–32

[18] Deny J., Lions J. L., “Les espaces du type de Beppo Levi”, Annales de I'institut Fourier, V (1955), 305–370 | MR

[19] Morrey C. B., “Functions of several variables and absolute continuity. II”, Duke Math. J., 6 (1940), 187–215 | DOI | MR | Zbl

[20] Nikolskii S. M., “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh prilozhenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Tr. Matem. in-ta AN SSSR, 38, 1951, 244–278 | MR | Zbl

[21] Friedrichs K., “On the differentiability of the solutions of linear elliptic differential equations”, Communs Pure and Appl. Math., 6:3 (1953), 299–326 | DOI | MR | Zbl

[22] Ladyzhenskaya O. A., “O zamykanii ellipticheskogo operatora”, Dokl. AN SSSR, 79:5 (1951), 723–724

[23] Ladyzhenskaya O. A., “O differentsialnykh svoistvakh obobschennykh reshenii nekotorykh mnogomernykh variatsionnykh zadach”, Dokl. AN SSSR, 120:5 (1958), 956–959 | Zbl

[24] Caccioppoli R., “Limitazion integrali per le soluzioni di un'equazione lineare ellittica a derivate pazziali”, Ciorn. mat. Battageini, 80 (1951), 186–212 | MR | Zbl

[25] Ladyzhenskaya O. A., Uraltseva N. N., “Kvazilineinye ellipticheskie uravneniya”, Uspekhi matem. nauk, 16:1(97) (1961), 19–90 | MR | Zbl

[26] Agmon S., Duglas A., Nirenberg L., Otsenki reshenii ellipticheskikh uravnenii vblizi granitsy pri obschikh granichnykh usloviyakh, IL, M., 1962

[27] Kudryavtsev L. D., “O reshenii variatsionnym metodom ellipticheskikh uravnenii, vyrozhdayuschikhsya na granitse oblasti”, Dokl. AN SSSR, 108:1 (1956), 16–19 | MR | Zbl

[28] Nikolskii Yu. S., “K teorii vesovykh klassov differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam k kraevym zadacham dlya ellipticheskikh uravnenii”, Dokl. AN SSSR, 162:3 (1965), 510–512

[29] Nikolskii Yu. S., “Granichnye zadachi iz vesovykh klassov”, Dokl. AN SSSR, 1964:3 (1965), 503–506

[30] Pigolkina T. S., “Teoremy vlozheniya dlya funktsii, opredelennykh na neogranichennykh oblastyakh, i ikh prilozhenie k kraevym zadacham dlya poligarmonicheskogo uravneniya”, Dokl. AN SSSR, 168:5 (1966), 1012–1014 | MR | Zbl