Uniqueness classes for solutions of the Cauchy problem for linear
Izvestiya. Mathematics , Tome 1 (1967) no. 5, pp. 1109-1129.

Voir la notice de l'article provenant de la source Math-Net.Ru

Uniqueness classes, and also nonuniqueness classes, are found for solutions of the Cauchy problem for equations or the form $\displaystyle\frac{\partial u}{\partial t}=\sum^n_{k=0}q_k(x)\frac{\partial^ku}{\partial x^k}$ in which the growth $q_0(x)$ as $|x|\to\infty$ is sufficiently rapid, the growth of the other coefficients is “subordinate” to that of $q_0(x)$, and the classes depend on $q_0(x)$.
@article{IM2_1967_1_5_a11,
     author = {Ya. I. Zhitomirskii},
     title = {Uniqueness classes for solutions of the {Cauchy} problem for linear},
     journal = {Izvestiya. Mathematics },
     pages = {1109--1129},
     publisher = {mathdoc},
     volume = {1},
     number = {5},
     year = {1967},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_5_a11/}
}
TY  - JOUR
AU  - Ya. I. Zhitomirskii
TI  - Uniqueness classes for solutions of the Cauchy problem for linear
JO  - Izvestiya. Mathematics 
PY  - 1967
SP  - 1109
EP  - 1129
VL  - 1
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1967_1_5_a11/
LA  - en
ID  - IM2_1967_1_5_a11
ER  - 
%0 Journal Article
%A Ya. I. Zhitomirskii
%T Uniqueness classes for solutions of the Cauchy problem for linear
%J Izvestiya. Mathematics 
%D 1967
%P 1109-1129
%V 1
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1967_1_5_a11/
%G en
%F IM2_1967_1_5_a11
Ya. I. Zhitomirskii. Uniqueness classes for solutions of the Cauchy problem for linear. Izvestiya. Mathematics , Tome 1 (1967) no. 5, pp. 1109-1129. http://geodesic.mathdoc.fr/item/IM2_1967_1_5_a11/

[1] Zhitomirskii Ya. I., “Klassy edinstvennosti resheniya zadachi Koshi dlya lineinykh uravnenii s rastuschimi koeffitsientami”, Izv. AN SSSR. Ser. matem., 31 (1967), 763–782 | Zbl

[2] Zhitomirskii Ya. I., “Klassy edinstvennosti resheniya zadachi Koshi dlya lineinykh uravnenii s bystro rastuschimi koeffitsientami”, Dokl. AN SSSR, 173:1 (1967), 26–29 | Zbl

[3] Rapoport I. M., O nekotorykh asimptoticheskikh metodakh v teorii differentsialnykh uravnenii, AN USSR, 1954

[4] Mandelbroit S., Primykayuschie ryady. Regulyarizatsii posledovatelnostei. Primeneniya, IL, M., 1955

[5] Zhitomirskii Ya. I., “Tochnye klassy edinstvennosti resheniya zadachi Koshi dlya uravnenii vtorogo poryadka”, Dokl. AN SSSR, 171:1 (1966), 29–32 | Zbl