Representations of finite groups over number rings
Izvestiya. Mathematics , Tome 1 (1967) no. 4, pp. 773-805

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R'$ be the ring of integers of a finite extension $F'$ of the field of rational $p$-adic numbers $Q_p$, and let $G$ be a finite group. All groups $G$ and fields $F'$ are found such that the number of indecomposable representations of $G$ over $R'$ is finite. In addition, we investigate the problem of complete reducibility of a matrix $R'$-representation of an abelian $p$-group, all of whose irreducible components are $F'$-equivalent.
@article{IM2_1967_1_4_a3,
     author = {P. M. Gudivok},
     title = {Representations of finite groups over number rings},
     journal = {Izvestiya. Mathematics },
     pages = {773--805},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {1967},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_4_a3/}
}
TY  - JOUR
AU  - P. M. Gudivok
TI  - Representations of finite groups over number rings
JO  - Izvestiya. Mathematics 
PY  - 1967
SP  - 773
EP  - 805
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1967_1_4_a3/
LA  - en
ID  - IM2_1967_1_4_a3
ER  - 
%0 Journal Article
%A P. M. Gudivok
%T Representations of finite groups over number rings
%J Izvestiya. Mathematics 
%D 1967
%P 773-805
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1967_1_4_a3/
%G en
%F IM2_1967_1_4_a3
P. M. Gudivok. Representations of finite groups over number rings. Izvestiya. Mathematics , Tome 1 (1967) no. 4, pp. 773-805. http://geodesic.mathdoc.fr/item/IM2_1967_1_4_a3/