Representations of finite groups over number rings
Izvestiya. Mathematics , Tome 1 (1967) no. 4, pp. 773-805
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R'$ be the ring of integers of a finite extension $F'$ of the field of rational $p$-adic numbers $Q_p$, and let $G$ be a finite group. All groups $G$ and fields $F'$ are found such that the number of indecomposable representations of $G$ over $R'$ is finite. In addition, we investigate the problem of complete reducibility of a matrix $R'$-representation of an abelian $p$-group, all of whose irreducible components are $F'$-equivalent.
@article{IM2_1967_1_4_a3,
author = {P. M. Gudivok},
title = {Representations of finite groups over number rings},
journal = {Izvestiya. Mathematics },
pages = {773--805},
publisher = {mathdoc},
volume = {1},
number = {4},
year = {1967},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_4_a3/}
}
P. M. Gudivok. Representations of finite groups over number rings. Izvestiya. Mathematics , Tome 1 (1967) no. 4, pp. 773-805. http://geodesic.mathdoc.fr/item/IM2_1967_1_4_a3/