Commutative rings with a finite number of indecomposable integral
Izvestiya. Mathematics , Tome 1 (1967) no. 4, pp. 757-772

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper answers the question as to the finiteness of the number of nonisomorphic indecomposable integral representations of an arbitrary commutative $Z$-ring.
@article{IM2_1967_1_4_a2,
     author = {Yu. A. Drozd and A. V. Roiter},
     title = {Commutative rings with a finite number of indecomposable integral},
     journal = {Izvestiya. Mathematics },
     pages = {757--772},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {1967},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_4_a2/}
}
TY  - JOUR
AU  - Yu. A. Drozd
AU  - A. V. Roiter
TI  - Commutative rings with a finite number of indecomposable integral
JO  - Izvestiya. Mathematics 
PY  - 1967
SP  - 757
EP  - 772
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1967_1_4_a2/
LA  - en
ID  - IM2_1967_1_4_a2
ER  - 
%0 Journal Article
%A Yu. A. Drozd
%A A. V. Roiter
%T Commutative rings with a finite number of indecomposable integral
%J Izvestiya. Mathematics 
%D 1967
%P 757-772
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1967_1_4_a2/
%G en
%F IM2_1967_1_4_a2
Yu. A. Drozd; A. V. Roiter. Commutative rings with a finite number of indecomposable integral. Izvestiya. Mathematics , Tome 1 (1967) no. 4, pp. 757-772. http://geodesic.mathdoc.fr/item/IM2_1967_1_4_a2/