Commutative rings with a finite number of indecomposable integral
Izvestiya. Mathematics , Tome 1 (1967) no. 4, pp. 757-772
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper answers the question as to the finiteness of the number of nonisomorphic indecomposable integral representations of an arbitrary commutative $Z$-ring.
@article{IM2_1967_1_4_a2,
author = {Yu. A. Drozd and A. V. Roiter},
title = {Commutative rings with a finite number of indecomposable integral},
journal = {Izvestiya. Mathematics },
pages = {757--772},
publisher = {mathdoc},
volume = {1},
number = {4},
year = {1967},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_4_a2/}
}
Yu. A. Drozd; A. V. Roiter. Commutative rings with a finite number of indecomposable integral. Izvestiya. Mathematics , Tome 1 (1967) no. 4, pp. 757-772. http://geodesic.mathdoc.fr/item/IM2_1967_1_4_a2/