A summation method for multiplicative functions
Izvestiya. Mathematics , Tome 1 (1967) no. 3, pp. 677-690.

Voir la notice de l'article provenant de la source Math-Net.Ru

An elementary method is advanced for studying the asymptotic behavior of sums of multiplicative functions.
@article{IM2_1967_1_3_a9,
     author = {B. V. Levin and A. S. Fainleib},
     title = {A summation method for multiplicative functions},
     journal = {Izvestiya. Mathematics },
     pages = {677--690},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {1967},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_3_a9/}
}
TY  - JOUR
AU  - B. V. Levin
AU  - A. S. Fainleib
TI  - A summation method for multiplicative functions
JO  - Izvestiya. Mathematics 
PY  - 1967
SP  - 677
EP  - 690
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1967_1_3_a9/
LA  - en
ID  - IM2_1967_1_3_a9
ER  - 
%0 Journal Article
%A B. V. Levin
%A A. S. Fainleib
%T A summation method for multiplicative functions
%J Izvestiya. Mathematics 
%D 1967
%P 677-690
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1967_1_3_a9/
%G en
%F IM2_1967_1_3_a9
B. V. Levin; A. S. Fainleib. A summation method for multiplicative functions. Izvestiya. Mathematics , Tome 1 (1967) no. 3, pp. 677-690. http://geodesic.mathdoc.fr/item/IM2_1967_1_3_a9/

[1] Kubilyus I. P., Veroyatnostnye metody v teorii chisel, Vilnyus, 1962 | Zbl

[2] Delange H., “Sur les functions arithmetiques multiplicatives”, Ann. Sci. Ecole Norm., 78 (1961), 273–304 | MR | Zbl

[3] Wirsing E., “Über die Zahlen, deren Primteiler einer gegebenen Menge angehören”, Arch. Math., 7 (1956), 263–272 | DOI | MR | Zbl

[4] Wirsing E., “Das asymptotische Verhalten von Summen über multiplikative Funktionen”, Math. Ann., 143 (1961), 75–102 | DOI | MR | Zbl

[5] Renyi A., “A new proof of a theorem of Delange”, Publ. Math., 12 (1965), 323–329 | MR | Zbl

[6] Levin B. V., Fainleib A. S., “Primenenie nekotorykh integralnykh uravnenii k voprosam teorii chisel”, Uspekhi matem. nauk, 22:3 (1967), 119–197 | MR | Zbl

[7] Rankin R. Y., “The difference between consecutive prime numbers”, J. London math. Soc., 13 (1938), 242–247 | DOI | Zbl