A linear boundary value problem for a system of composite partial differential equations
Izvestiya. Mathematics , Tome 1 (1967) no. 3, pp. 525-543.

Voir la notice de l'article provenant de la source Math-Net.Ru

A two-variable system of first-order partial differential equations is investigated which has, in the region under consideration, one family of real characteristics and two families of imaginary characteristics. A general linear boundary value problem for the system is studied. It is proved that if a certain condition is imposed on the coefficients in the boundary conditions, there is only a finite number of linearly independent solutions of the homogeneous problem and of the adjoint homogeneous problem. A formula for the index of the above problem is derived and a necessary and sufficient condition for the solvability of the inhomogeneous problem is obtained in terms of the homogeneous adjoint problem.
@article{IM2_1967_1_3_a2,
     author = {A. D. Dzhuraev},
     title = {A linear boundary value problem for a system of composite partial differential equations},
     journal = {Izvestiya. Mathematics },
     pages = {525--543},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {1967},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_3_a2/}
}
TY  - JOUR
AU  - A. D. Dzhuraev
TI  - A linear boundary value problem for a system of composite partial differential equations
JO  - Izvestiya. Mathematics 
PY  - 1967
SP  - 525
EP  - 543
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1967_1_3_a2/
LA  - en
ID  - IM2_1967_1_3_a2
ER  - 
%0 Journal Article
%A A. D. Dzhuraev
%T A linear boundary value problem for a system of composite partial differential equations
%J Izvestiya. Mathematics 
%D 1967
%P 525-543
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1967_1_3_a2/
%G en
%F IM2_1967_1_3_a2
A. D. Dzhuraev. A linear boundary value problem for a system of composite partial differential equations. Izvestiya. Mathematics , Tome 1 (1967) no. 3, pp. 525-543. http://geodesic.mathdoc.fr/item/IM2_1967_1_3_a2/

[1] Carleman T., “Sur les systems lineaires aux derivees partielles du premier ordre a doux variables”, Compt. Rend. Ac. Sci., 197 (1933), 471–474 | Zbl

[2] Carleman T., “Sur une probleme d'unicite pour les systems d'équations aux derivees partielles a deux variables independents”, Arciv for Math. Astr. och. Fysik, 26B:17 (1939), 1–11 | MR

[3] Hadamard I., “Properties d'une equation lineare aux derivees partielles du quatrieme ordre”, Tohoky Math. J., 37 (1933), 133–150 | Zbl

[4] Sjöstrand O., “Sur une equation aux dérivees partielles du type composite”, Arkiv för Math., 25A:21 (1936), 1–11

[5] Sjöstrand O., “Sur une equation aux dérivees partielles du type composite”, Arkiv för Math., 26A:1 (1939), 1–10

[6] Beckert H., “Über lineare elliptische systeme partieller Differentialgleichungen erster Ordnung mit zwei unabhangigen variablen”, Mathem. Nachrichen, 5 (1951), 173–208 | DOI | MR | Zbl

[7] Beckert H., “Abschätzangen bei Mnearen elliptischen Systemen. I. Ordnung mit zwei unabhängigen Variablen”, Mathematische Nachrichten, 13 (1954), 16–46

[8] Bitsadze A. V., Uravneniya smeshannogo tipa, AN SSSR, M., 1959

[9] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959 | MR

[10] Boyarskii B. V., Issledovaniya po uravneniyam ellipticheskogo tipa i granichnye zadachi teorii funktsii, Doktorskaya dissertatsiya, Matem. in-t im. V. A. Steklova AN SSSR, M., 1960

[11] Volpert A. I., “Normalnaya razreshimost granichnykh zadach dlya ellipticheskikh sistem differentsialnykh uravnenii na ploskosti”, Teor. i prakt. matem., t. 1, Lvov, 1958, 28–57 | MR

[12] Dzhuraev A., “Ob osnovnykh granichnykh zadachakh dlya obschei ellipticheskoi sistemy vtorogo poryadka na ploskosti”, Sib. matem. zh., VI:4 (1965), 798–813

[13] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Fizmatgiz, M., 1959

[14] Vekua N. P., Sistemy singulyarnykh integralnykh uravnenii, Gostekhizdat, M., 1951

[15] Dzhuraev A., “Obschie kraevye zadachi dlya ellipticheskikh uravnenii s neanaliticheskim koeffitsientom”, Sib. matem. zh., IV:3 (1963), 539–561 | MR

[16] Volpert A. I., “Ob indekse i normalnoi razreshimosti granichnykh zadach dlya ellipticheskikh sistem differentsialnykh uravnenii na ploskosti”, Tr. Mosk. matem. ob-va, 10 (1961), 41–87 | MR

[17] Petrovskii I. G., Lektsii ob uravneniyakh s chastnymi proizvodnymi, Fizmatgiz, M., 1961 | MR

[18] Atkinson F. A., “Normalnaya razreshimost lineinykh uravnenii v normirovannykh prostranstvakh”, Matem. sb., 28(70) (1951), 3–14 | Zbl

[19] Dzhuraev A., “O vzaimno sopryazhennykh granichnykh zadachakh dlya sistemy trekh uravnenii sostavnogo tipa”, Dokl. AN SSSR, 171:2 (1960), 259–261