On two-dimensional algebraic tori. II
Izvestiya. Mathematics , Tome 1 (1967) no. 3, pp. 691-696.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proven that two-dimensional algebraic tori are rational over their field of definition.
@article{IM2_1967_1_3_a10,
     author = {V. E. Voskresenskii},
     title = {On two-dimensional algebraic tori. {II}},
     journal = {Izvestiya. Mathematics },
     pages = {691--696},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {1967},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_3_a10/}
}
TY  - JOUR
AU  - V. E. Voskresenskii
TI  - On two-dimensional algebraic tori. II
JO  - Izvestiya. Mathematics 
PY  - 1967
SP  - 691
EP  - 696
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1967_1_3_a10/
LA  - en
ID  - IM2_1967_1_3_a10
ER  - 
%0 Journal Article
%A V. E. Voskresenskii
%T On two-dimensional algebraic tori. II
%J Izvestiya. Mathematics 
%D 1967
%P 691-696
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1967_1_3_a10/
%G en
%F IM2_1967_1_3_a10
V. E. Voskresenskii. On two-dimensional algebraic tori. II. Izvestiya. Mathematics , Tome 1 (1967) no. 3, pp. 691-696. http://geodesic.mathdoc.fr/item/IM2_1967_1_3_a10/

[1] Voskresenskii V. E., “O dvumernykh algebraicheskikh torakh”, Izv. AN SSSR. Ser. matem., 29 (1965), 239–244 | MR

[2] Chevalley C., “On algebraic group varieties”, J. Math. Spc. Japan, 6 (1954), 303–324 | MR | Zbl

[3] Algebraicheskie poverkhnosti, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 75, 1965 | MR | Zbl

[4] Nagata M., “Ratsionalnye poverkhnosti”, Matematika, 8:4 (1964), 75–94

[5] Baldassari M., Algebraicheskie mnogoobraziya, IL, M., 1961