Elementary spherical functions on the group $SL(2,P)$ over a field~$P$, which is not locally compact, with respect to the subgroup of matrices with integral elements
Izvestiya. Mathematics , Tome 1 (1967) no. 2, pp. 349-380
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that in the space $H$ of an irreducible unitary (in the $\Pi_1$-metric) representation $T(g)$ of the group $G=SL(2,P)$ over a normed field $P$ that is not locally compact there exists a vector $y_0$ satisfying the condition $T(g)y_0=y_0$, where $g$ runs over the subgroup $G_0$ of matrices $g\in G$ with integral elements. The function $(T(g)y_0,y_0)$ is calculated; also investigated are the unitary representations of $G$ containing the identity representation $G_0$.
@article{IM2_1967_1_2_a9,
author = {R. S. Ismagilov},
title = {Elementary spherical functions on the group $SL(2,P)$ over a field~$P$, which is not locally compact, with respect to the subgroup of matrices with integral elements},
journal = {Izvestiya. Mathematics },
pages = {349--380},
publisher = {mathdoc},
volume = {1},
number = {2},
year = {1967},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a9/}
}
TY - JOUR AU - R. S. Ismagilov TI - Elementary spherical functions on the group $SL(2,P)$ over a field~$P$, which is not locally compact, with respect to the subgroup of matrices with integral elements JO - Izvestiya. Mathematics PY - 1967 SP - 349 EP - 380 VL - 1 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a9/ LA - en ID - IM2_1967_1_2_a9 ER -
%0 Journal Article %A R. S. Ismagilov %T Elementary spherical functions on the group $SL(2,P)$ over a field~$P$, which is not locally compact, with respect to the subgroup of matrices with integral elements %J Izvestiya. Mathematics %D 1967 %P 349-380 %V 1 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a9/ %G en %F IM2_1967_1_2_a9
R. S. Ismagilov. Elementary spherical functions on the group $SL(2,P)$ over a field~$P$, which is not locally compact, with respect to the subgroup of matrices with integral elements. Izvestiya. Mathematics , Tome 1 (1967) no. 2, pp. 349-380. http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a9/