On uniqueness theorems for harmonic functions in a cylinder
Izvestiya. Mathematics , Tome 1 (1967) no. 2, pp. 341-347

Voir la notice de l'article provenant de la source Math-Net.Ru

Harmonic functions $U(r,\varphi,x)$ in an infinite cylinder $Q$ are considered herein. Conditions are given under which it follows that $U(r,\varphi,x)\equiv0$ from the boundedness of the normal derivative of the function $U(r,\varphi,x)$ on parallel sections of the cylinder $Q$.
@article{IM2_1967_1_2_a8,
     author = {V. P. Gromov},
     title = {On uniqueness theorems for harmonic functions in a cylinder},
     journal = {Izvestiya. Mathematics },
     pages = {341--347},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1967},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a8/}
}
TY  - JOUR
AU  - V. P. Gromov
TI  - On uniqueness theorems for harmonic functions in a cylinder
JO  - Izvestiya. Mathematics 
PY  - 1967
SP  - 341
EP  - 347
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a8/
LA  - en
ID  - IM2_1967_1_2_a8
ER  - 
%0 Journal Article
%A V. P. Gromov
%T On uniqueness theorems for harmonic functions in a cylinder
%J Izvestiya. Mathematics 
%D 1967
%P 341-347
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a8/
%G en
%F IM2_1967_1_2_a8
V. P. Gromov. On uniqueness theorems for harmonic functions in a cylinder. Izvestiya. Mathematics , Tome 1 (1967) no. 2, pp. 341-347. http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a8/