On uniqueness theorems for harmonic functions in a cylinder
Izvestiya. Mathematics, Tome 1 (1967) no. 2, pp. 341-347
Cet article a éte moissonné depuis la source Math-Net.Ru
Harmonic functions $U(r,\varphi,x)$ in an infinite cylinder $Q$ are considered herein. Conditions are given under which it follows that $U(r,\varphi,x)\equiv0$ from the boundedness of the normal derivative of the function $U(r,\varphi,x)$ on parallel sections of the cylinder $Q$.
@article{IM2_1967_1_2_a8,
author = {V. P. Gromov},
title = {On uniqueness theorems for harmonic functions in a cylinder},
journal = {Izvestiya. Mathematics},
pages = {341--347},
year = {1967},
volume = {1},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a8/}
}
V. P. Gromov. On uniqueness theorems for harmonic functions in a cylinder. Izvestiya. Mathematics, Tome 1 (1967) no. 2, pp. 341-347. http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a8/
[1] Evgrafov M. A., Chegis I. A., “Obobschenie teoremy Fragmena–Lindelëfa dlya analiticheskikh funktsii na garmonicheskie funktsii v prostranstve”, Dokl. AN SSSR, 134:2 (1960), 259–262 | MR | Zbl
[2] Leontev A. F., “O teoremakh tipa Fragmena–Lindelëfa dlya garmonicheskikh funktsii v tsilindre”, Izv. AN SSSR. Ser. matem., 27 (1963), 661–676 | MR
[3] Leontev A. F., “O nekotorykh teoremakh edinstvennosti dlya ryadov Dirikhle”, Izv. AN SSSR. Ser. matem., 27 (1963), 1251–1280 | MR
[4] Gromov V. P., “O roste funktsii na posledovatelnosti tochek lucha”, Izv. AN ArmSSR. Ser. fiz.-mat. nauk, XV:1 (1962), 37–51 | MR
[5] Smirnov V. I., Kurs vysshei matematiki, t. III, chast 2, GITTL, M., L, 1950