On uniqueness theorems for harmonic functions in a cylinder
Izvestiya. Mathematics , Tome 1 (1967) no. 2, pp. 341-347
Voir la notice de l'article provenant de la source Math-Net.Ru
Harmonic functions $U(r,\varphi,x)$ in an infinite cylinder $Q$ are considered herein. Conditions are given under which it follows that $U(r,\varphi,x)\equiv0$ from the boundedness of the normal derivative of the function $U(r,\varphi,x)$ on parallel sections of the cylinder $Q$.
@article{IM2_1967_1_2_a8,
author = {V. P. Gromov},
title = {On uniqueness theorems for harmonic functions in a cylinder},
journal = {Izvestiya. Mathematics },
pages = {341--347},
publisher = {mathdoc},
volume = {1},
number = {2},
year = {1967},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a8/}
}
V. P. Gromov. On uniqueness theorems for harmonic functions in a cylinder. Izvestiya. Mathematics , Tome 1 (1967) no. 2, pp. 341-347. http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a8/