On the problem of reducibility of systems of linear differential equations with quasiperiodic coefficients
Izvestiya. Mathematics, Tome 1 (1967) no. 2, pp. 335-340
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown herein that there are irreducible systems among those with quasiperiodic analytic coefficients whose frequencies are algebraic numbers.
@article{IM2_1967_1_2_a7,
author = {I. N. Blinov},
title = {On the problem of reducibility of systems of linear differential equations with quasiperiodic coefficients},
journal = {Izvestiya. Mathematics},
pages = {335--340},
year = {1967},
volume = {1},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a7/}
}
I. N. Blinov. On the problem of reducibility of systems of linear differential equations with quasiperiodic coefficients. Izvestiya. Mathematics, Tome 1 (1967) no. 2, pp. 335-340. http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a7/
[1] Arnold V. I., “Malye znamenateli i problemy ustoichivosti dvizheniya v klassicheskoi i nebesnoi mekhanike”, Uspekhi matem. nauk, 18:6(114) (1963), 91–196 | MR
[2] Erugin N. P., Privodimye sistemy, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 13, 1946 | MR | Zbl
[3] Levitan B. M., Pochti-periodicheskie funktsii, GITTL, M., 1953