On the problem of reducibility of systems of linear differential equations with quasiperiodic coefficients
Izvestiya. Mathematics , Tome 1 (1967) no. 2, pp. 335-340.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown herein that there are irreducible systems among those with quasiperiodic analytic coefficients whose frequencies are algebraic numbers.
@article{IM2_1967_1_2_a7,
     author = {I. N. Blinov},
     title = {On the problem of reducibility of systems of linear differential equations with quasiperiodic coefficients},
     journal = {Izvestiya. Mathematics },
     pages = {335--340},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1967},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a7/}
}
TY  - JOUR
AU  - I. N. Blinov
TI  - On the problem of reducibility of systems of linear differential equations with quasiperiodic coefficients
JO  - Izvestiya. Mathematics 
PY  - 1967
SP  - 335
EP  - 340
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a7/
LA  - en
ID  - IM2_1967_1_2_a7
ER  - 
%0 Journal Article
%A I. N. Blinov
%T On the problem of reducibility of systems of linear differential equations with quasiperiodic coefficients
%J Izvestiya. Mathematics 
%D 1967
%P 335-340
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a7/
%G en
%F IM2_1967_1_2_a7
I. N. Blinov. On the problem of reducibility of systems of linear differential equations with quasiperiodic coefficients. Izvestiya. Mathematics , Tome 1 (1967) no. 2, pp. 335-340. http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a7/

[1] Arnold V. I., “Malye znamenateli i problemy ustoichivosti dvizheniya v klassicheskoi i nebesnoi mekhanike”, Uspekhi matem. nauk, 18:6(114) (1963), 91–196 | MR

[2] Erugin N. P., Privodimye sistemy, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 13, 1946 | MR | Zbl

[3] Levitan B. M., Pochti-periodicheskie funktsii, GITTL, M., 1953