On linear methods for the summability of Fourier series that are similar to the Bernshtein--Rogosinski method
Izvestiya. Mathematics , Tome 1 (1967) no. 2, pp. 319-333.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider sequences of linear operators, the construction of which recalls the well-known Bernshtein–Rogosinski sums and constitutes a far-reaching generalization of them. We study conditions for the convergence of sequences of such operators, using results that we first obtain on linear summability methods for Fourier–Lebesgue series and their conjugate series.
@article{IM2_1967_1_2_a6,
     author = {G. A. Fomin},
     title = {On linear methods for the summability of {Fourier} series that are similar to the {Bernshtein--Rogosinski} method},
     journal = {Izvestiya. Mathematics },
     pages = {319--333},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1967},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a6/}
}
TY  - JOUR
AU  - G. A. Fomin
TI  - On linear methods for the summability of Fourier series that are similar to the Bernshtein--Rogosinski method
JO  - Izvestiya. Mathematics 
PY  - 1967
SP  - 319
EP  - 333
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a6/
LA  - en
ID  - IM2_1967_1_2_a6
ER  - 
%0 Journal Article
%A G. A. Fomin
%T On linear methods for the summability of Fourier series that are similar to the Bernshtein--Rogosinski method
%J Izvestiya. Mathematics 
%D 1967
%P 319-333
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a6/
%G en
%F IM2_1967_1_2_a6
G. A. Fomin. On linear methods for the summability of Fourier series that are similar to the Bernshtein--Rogosinski method. Izvestiya. Mathematics , Tome 1 (1967) no. 2, pp. 319-333. http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a6/

[1] Bernshtein S. E., Ob odnom metode summirovaniya trigonometricheskikh ryadov, t. 1, M., L., 1930

[2] Rogosinski W., “Über die Abschnitte trigonometrischer Reihen”, Math. Ann., 95 (1925), 110–134 | DOI | MR | Zbl

[3] Timan A. F., Ganzburg I. M., “O skhodimosti nekotorykh protsessov summirovaniya ryadov Fure”, Dokl. AN SSSR, 63:6 (1948), 619–622 | MR | Zbl

[4] Timan A. F., “O nekotorykh metodakh summirovaniya ryadov Fure”, Izv. AN SSSR. Ser. matem., 14 (1950), 85–94 | MR | Zbl

[5] Ganzburg I. M., “Ob odnom metode priblizheniya nepreryvnykh funktsii trigonometricheskimi polinomami”, Dokl. AN SSSR, 64:1 (1949), 13–16 | MR | Zbl

[6] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[7] Hardy G. H., Littlewood J. E., “Sur la serie de Fourier d'une fonction a carre Sommable”, Compt. rend. Sean. Acad. Sci., 156 (1913), 1307–1309 | Zbl

[8] Carleman T., “A theorem concerning Fourier Series”, Proc. London Math. Soc., 21 (1923), 483–492 | DOI | Zbl

[9] Zygmund A., “On the convergence and Summability of power on the circle of convergence”, Proc. London Math. Soc., 47 (1942), 326–350 | DOI | MR | Zbl

[10] Zigmund A., Trigonometricheskie ryady, Mir, M., 1965 | MR

[11] Fomin G. A., “O lineinykh metodakh summirovaniya ryadov Fure”, Matem. sb., 65(107) (1964), 144–152 | Zbl

[12] Hausdorff F., “Eine Ausdehnung des Parsevalschen Satzes über Fourierreihen”, Math. Z., 16 (1923), 163–169 | DOI | MR | Zbl

[13] Young W. H., “On the multiplication of successions of Fourier constants”, Proc. Roy. Soc.(A), 87 (1912), 331–339 | DOI

[14] Young W. H., “On the determination of the Summability of a function by means of its Fourier coefficients”, Proc. London Math. Soc., 12 (1913), 71–88 | DOI | Zbl

[15] Khardi G., Rogozinskii V., Ryady Fure, Fizmatgiz, M., 1959