On a problem of Szeg\"o, Kac, Baxter and Hirschman
Izvestiya. Mathematics , Tome 1 (1967) no. 2, pp. 273-289.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we consider a problem from the theory of Toeplitz forms first posed and solved by G. Szegö in 1952, and then solved under different conditions by a series of authors; in this work we indicate the solution to this problem of G. Szegö under more general conditions than those of the authors mentioned in the title.
@article{IM2_1967_1_2_a4,
     author = {Ya. L. Geronimus},
     title = {On a problem of {Szeg\"o,} {Kac,} {Baxter} and {Hirschman}},
     journal = {Izvestiya. Mathematics },
     pages = {273--289},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1967},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a4/}
}
TY  - JOUR
AU  - Ya. L. Geronimus
TI  - On a problem of Szeg\"o, Kac, Baxter and Hirschman
JO  - Izvestiya. Mathematics 
PY  - 1967
SP  - 273
EP  - 289
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a4/
LA  - en
ID  - IM2_1967_1_2_a4
ER  - 
%0 Journal Article
%A Ya. L. Geronimus
%T On a problem of Szeg\"o, Kac, Baxter and Hirschman
%J Izvestiya. Mathematics 
%D 1967
%P 273-289
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a4/
%G en
%F IM2_1967_1_2_a4
Ya. L. Geronimus. On a problem of Szeg\"o, Kac, Baxter and Hirschman. Izvestiya. Mathematics , Tome 1 (1967) no. 2, pp. 273-289. http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a4/

[1] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[2] Geronimus Ya. L., “Mnogochleny, ortogonalnye na kruge, i ikh primeneniya”, Zap. Nauchno-issled. in-ta matem. i mekh. i KhMO, 19 (1948), 35–120 | MR | Zbl

[3] Geronimus Ya. L., “Ob asimptoticheskikh svoistvakh polinomov, ortogonalnykh na edinichnom kruge, i nekotorykh svoistvakh polozhitelnykh garmonicheskikh funktsii”, Izv. AN SSSR. Ser. matem., 14 (1950), 123–144 | MR

[4] Geronimus Ya. L., Mnogochleny, ortogonalnye na okruzhnosti i na otrezke, Fizmatgiz, M., 1958 | Zbl

[5] Geronimus Ya. L., Golinskii B. L., “Asimptoticheskie formuly dlya ortogonalnykh mnogochlenov”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, t. 1, Kharkov, 1965, 141–163 | MR | Zbl

[6] Grenander U., Sege G., Teplitsevy formy i ikh prilozheniya, IL, M., 1961

[7] Zigmund A., Trigonometricheskie ryady, t. I, Mir, M., 1965 | MR

[8] Konyushkov A. A., “Nailuchshie priblizheniya trigonometricheskimi polinomami i koeffitsienty Fure”, Mat. sb., 44(86) (1958), 53–84

[9] Timan A. F., Teoriya priblizheniya funktsii veschestvennogo peremennogo, Fizmatgiz, M., 1960

[10] Xardi G. G., Littlvud D. E., Polia G., Neravenstva, IL, M., 1948

[11] Baxter G., “A convergence equivalence related to polynomials orthogonal on the unit circle”, Trans. Amer. Math. Soc., 99:3 (1961), 471–487 | DOI | MR | Zbl

[12] Hardy G. H., Rogosinski W. W., Fourier series, Cambridge Univ. Press, 1956 | MR | Zbl

[13] Hirschman I. Jr., “On a theorem of Szegö, Kac and Baxter”, J. analyse math., 14 (1965), 225–234 | DOI | MR | Zbl

[14] Kac M., “Toeplitz matrices, translation kernels and a related problem in probability theory”, Duke Math. J., 21 (1954), 501–510 | DOI | MR

[15] Landau E., Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie, Berlin, 1916

[16] Szász O., “On the absolute convergence of trigonometric series”, Ann. Math., 47 (1946), 213–220 | DOI | MR | Zbl

[17] Szegö G., “Beiträge zur Theorie der Toeplitzschen Formen”, Math. Z., 6 (1920), 167–202 ; 9 (1921), 167–190 | DOI | MR | DOI | MR

[18] Szegö G., “On certain hermitian forms associated with the Fourier series of a positive function”, Comm. Sém. Math. Univ. Lund, 1952, 228–238 | MR | Zbl

[19] Verblunsky S., “On positive harmonic functions. II”, Proc. Lond. Math. Soc., 40 (1935), 290–320 | DOI | Zbl