The stability of solutions of certain operator equations with lagging arguments
Izvestiya. Mathematics , Tome 1 (1967) no. 2, pp. 381-390
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the equation
\begin{gather*}
y(t_1,\dots,t_n)-\sum_{q_1\dots q_n}A_{q_1\dots q_n}y(t_1-m^{(1)}_{q_1\dots q_n}a_1,\dots,t_n-m^{(n)}_{q_1\dots q_n}a_n)=f
\\
(m^{(k)}_{q_1\dots q_n} \text{ -- are integers} \geqslant0;\ a_k>0;\ 0\leqslant t_1,\dots,t_n\infty),
\end{gather*}
where the $A_{q_1\dots q_n}=A_{q_1\dots q_n}(t_1,\dots,t_n)$ are continuous linear operator-functions operating in a complex Banach space. We establish necessary and sufficient tests for the boundedness of the solutions $y(t_1,\dots,t_n)$ of these equations for all bounded right-hand sides $f=f(t_1,\dots,t_n)$
@article{IM2_1967_1_2_a10,
author = {Z. I. Rekhlitskii},
title = {The stability of solutions of certain operator equations with lagging arguments},
journal = {Izvestiya. Mathematics },
pages = {381--390},
publisher = {mathdoc},
volume = {1},
number = {2},
year = {1967},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a10/}
}
Z. I. Rekhlitskii. The stability of solutions of certain operator equations with lagging arguments. Izvestiya. Mathematics , Tome 1 (1967) no. 2, pp. 381-390. http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a10/