The stability of solutions of certain operator equations with lagging arguments
Izvestiya. Mathematics , Tome 1 (1967) no. 2, pp. 381-390.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the equation \begin{gather*} y(t_1,\dots,t_n)-\sum_{q_1\dots q_n}A_{q_1\dots q_n}y(t_1-m^{(1)}_{q_1\dots q_n}a_1,\dots,t_n-m^{(n)}_{q_1\dots q_n}a_n)=f \\ (m^{(k)}_{q_1\dots q_n} \text{ -- are integers} \geqslant0;\ a_k>0;\ 0\leqslant t_1,\dots,t_n\infty), \end{gather*} where the $A_{q_1\dots q_n}=A_{q_1\dots q_n}(t_1,\dots,t_n)$ are continuous linear operator-functions operating in a complex Banach space. We establish necessary and sufficient tests for the boundedness of the solutions $y(t_1,\dots,t_n)$ of these equations for all bounded right-hand sides $f=f(t_1,\dots,t_n)$
@article{IM2_1967_1_2_a10,
     author = {Z. I. Rekhlitskii},
     title = {The stability of solutions of certain operator equations with lagging arguments},
     journal = {Izvestiya. Mathematics },
     pages = {381--390},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1967},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a10/}
}
TY  - JOUR
AU  - Z. I. Rekhlitskii
TI  - The stability of solutions of certain operator equations with lagging arguments
JO  - Izvestiya. Mathematics 
PY  - 1967
SP  - 381
EP  - 390
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a10/
LA  - en
ID  - IM2_1967_1_2_a10
ER  - 
%0 Journal Article
%A Z. I. Rekhlitskii
%T The stability of solutions of certain operator equations with lagging arguments
%J Izvestiya. Mathematics 
%D 1967
%P 381-390
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a10/
%G en
%F IM2_1967_1_2_a10
Z. I. Rekhlitskii. The stability of solutions of certain operator equations with lagging arguments. Izvestiya. Mathematics , Tome 1 (1967) no. 2, pp. 381-390. http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a10/

[1] Krein M. G., “O nekotorykh voprosakh, svyazannykh s krugom idei Lyapunova v teorii ustoichivosti”, Uspekhi matem. nauk, III:3(25) (1948), 166–170 | MR

[2] Rekhlitskii Z. I., “Ob otsenkakh rosta reshenii differentsialno-raznostnykh uravnenii v chastnykh proizvodnykh giperbolicheskogo tipa”, Dokl. AN SSSR, 162:4 (1965), 759–762