Harmonic functions representable by integrals of Green type.~I
Izvestiya. Mathematics , Tome 1 (1967) no. 1, pp. 139-149

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the concepts of an integral of Green–Lebesgue type and the integral of Green–Lebesgue which generalizes the classical representation of a harmonic function inside a closed surface $S$ by means of Green's formula. We give conditions for representability of a harmonic function by integrals of the above types. In this part of the work we consider the case of the unit sphere $S$.
@article{IM2_1967_1_1_a8,
     author = {E. D. Solomentsev},
     title = {Harmonic functions representable by integrals of {Green} {type.~I}},
     journal = {Izvestiya. Mathematics },
     pages = {139--149},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1967},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_1_a8/}
}
TY  - JOUR
AU  - E. D. Solomentsev
TI  - Harmonic functions representable by integrals of Green type.~I
JO  - Izvestiya. Mathematics 
PY  - 1967
SP  - 139
EP  - 149
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1967_1_1_a8/
LA  - en
ID  - IM2_1967_1_1_a8
ER  - 
%0 Journal Article
%A E. D. Solomentsev
%T Harmonic functions representable by integrals of Green type.~I
%J Izvestiya. Mathematics 
%D 1967
%P 139-149
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1967_1_1_a8/
%G en
%F IM2_1967_1_1_a8
E. D. Solomentsev. Harmonic functions representable by integrals of Green type.~I. Izvestiya. Mathematics , Tome 1 (1967) no. 1, pp. 139-149. http://geodesic.mathdoc.fr/item/IM2_1967_1_1_a8/