Harmonic functions representable by integrals of Green type.~I
Izvestiya. Mathematics , Tome 1 (1967) no. 1, pp. 139-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the concepts of an integral of Green–Lebesgue type and the integral of Green–Lebesgue which generalizes the classical representation of a harmonic function inside a closed surface $S$ by means of Green's formula. We give conditions for representability of a harmonic function by integrals of the above types. In this part of the work we consider the case of the unit sphere $S$.
@article{IM2_1967_1_1_a8,
     author = {E. D. Solomentsev},
     title = {Harmonic functions representable by integrals of {Green} {type.~I}},
     journal = {Izvestiya. Mathematics },
     pages = {139--149},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1967},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_1_a8/}
}
TY  - JOUR
AU  - E. D. Solomentsev
TI  - Harmonic functions representable by integrals of Green type.~I
JO  - Izvestiya. Mathematics 
PY  - 1967
SP  - 139
EP  - 149
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1967_1_1_a8/
LA  - en
ID  - IM2_1967_1_1_a8
ER  - 
%0 Journal Article
%A E. D. Solomentsev
%T Harmonic functions representable by integrals of Green type.~I
%J Izvestiya. Mathematics 
%D 1967
%P 139-149
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1967_1_1_a8/
%G en
%F IM2_1967_1_1_a8
E. D. Solomentsev. Harmonic functions representable by integrals of Green type.~I. Izvestiya. Mathematics , Tome 1 (1967) no. 1, pp. 139-149. http://geodesic.mathdoc.fr/item/IM2_1967_1_1_a8/

[1] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, GITTL, M., 1950

[2] Khavinson S. Ya., “Analiticheskie funktsii ogranichennogo vida”, Itogi nauki. Matematicheskii analiz 1963, VINITI, M., 1965, 5–80 | MR | Zbl

[3] Gyunter N. M., Teoriya potentsiala i ee primenenie k osnovnym zadacham matematicheskoi fiziki, GITTL, M., 1953 | MR

[4] Miranda K., Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, IL, M., 1957

[5] Privalov I. I., Kuznetsov P. I., “Granichnye zadachi i razlichnye klassy garmonicheskikh i subgarmonicheskikh funktsii, opredelennykh v proizvolnykh oblastyakh”, Matem. sb., 6(48) (1939), 345–376

[6] Solomentsev E. D., “Ob osnovnoi formule Grina dlya garmonicheskikh funktsii”, Sibirsk. matem. zh., 7 (1966), 1469–1471

[7] Garrett G. A., “Necessary and sufficient conditions for potentials of single and double layers”, Amer. J. Math., 58 (1936), 95–129 | DOI | MR | Zbl