Summability of the Dirichlet series with real exponents for an arbitrary analytic function
Izvestiya. Mathematics , Tome 1 (1967) no. 1, pp. 81-94

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a function $f(z)$ that is analytic on a closed vertical interval of length $2\pi\sigma$, we use a definite rule to associate with it a formal Dirichlet series with exponents $\pm\lambda_n(n=1,2,\dots)$, where $\lambda_n>0$ and $\lim\limits_{n\to\infty}\frac{n}{\lambda_n}=\sigma$. In general this series diverges everywhere. We give a method for summing it to the function $f(z)$.
@article{IM2_1967_1_1_a5,
     author = {A. F. Leont'ev},
     title = {Summability of the {Dirichlet} series with real exponents for an arbitrary analytic function},
     journal = {Izvestiya. Mathematics },
     pages = {81--94},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1967},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_1_a5/}
}
TY  - JOUR
AU  - A. F. Leont'ev
TI  - Summability of the Dirichlet series with real exponents for an arbitrary analytic function
JO  - Izvestiya. Mathematics 
PY  - 1967
SP  - 81
EP  - 94
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1967_1_1_a5/
LA  - en
ID  - IM2_1967_1_1_a5
ER  - 
%0 Journal Article
%A A. F. Leont'ev
%T Summability of the Dirichlet series with real exponents for an arbitrary analytic function
%J Izvestiya. Mathematics 
%D 1967
%P 81-94
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1967_1_1_a5/
%G en
%F IM2_1967_1_1_a5
A. F. Leont'ev. Summability of the Dirichlet series with real exponents for an arbitrary analytic function. Izvestiya. Mathematics , Tome 1 (1967) no. 1, pp. 81-94. http://geodesic.mathdoc.fr/item/IM2_1967_1_1_a5/