Summability of the Dirichlet series with real exponents for an arbitrary analytic function
Izvestiya. Mathematics , Tome 1 (1967) no. 1, pp. 81-94
Voir la notice de l'article provenant de la source Math-Net.Ru
Given a function $f(z)$ that is analytic on a closed vertical interval of length $2\pi\sigma$, we use a definite rule to associate with it a formal Dirichlet series with exponents $\pm\lambda_n(n=1,2,\dots)$, where $\lambda_n>0$ and $\lim\limits_{n\to\infty}\frac{n}{\lambda_n}=\sigma$. In general this series diverges everywhere. We give a method for summing it to the function $f(z)$.
@article{IM2_1967_1_1_a5,
author = {A. F. Leont'ev},
title = {Summability of the {Dirichlet} series with real exponents for an arbitrary analytic function},
journal = {Izvestiya. Mathematics },
pages = {81--94},
publisher = {mathdoc},
volume = {1},
number = {1},
year = {1967},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_1_a5/}
}
A. F. Leont'ev. Summability of the Dirichlet series with real exponents for an arbitrary analytic function. Izvestiya. Mathematics , Tome 1 (1967) no. 1, pp. 81-94. http://geodesic.mathdoc.fr/item/IM2_1967_1_1_a5/