Voir la notice de l'article provenant de la source European Digital Mathematics Library
@article{IJOPCM_2009__2_2_225314, author = {Boni, Th\'eodore K. and Kouakou, Thibaut K.}, title = {Quenching semidiscretizations in time of a nonlocal parabolic problem with {Neumann} boundary condition.}, journal = {International Journal of Open Problems in Computer Science and Mathematics. IJOPCM}, pages = {311}, publisher = {mathdoc}, volume = {2}, number = {2}, year = {2009}, zbl = {1207.35021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJOPCM_2009__2_2_225314/} }
TY - JOUR AU - Boni, Théodore K. AU - Kouakou, Thibaut K. TI - Quenching semidiscretizations in time of a nonlocal parabolic problem with Neumann boundary condition. JO - International Journal of Open Problems in Computer Science and Mathematics. IJOPCM PY - 2009 SP - 311 VL - 2 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJOPCM_2009__2_2_225314/ LA - en ID - IJOPCM_2009__2_2_225314 ER -
%0 Journal Article %A Boni, Théodore K. %A Kouakou, Thibaut K. %T Quenching semidiscretizations in time of a nonlocal parabolic problem with Neumann boundary condition. %J International Journal of Open Problems in Computer Science and Mathematics. IJOPCM %D 2009 %P 311 %V 2 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJOPCM_2009__2_2_225314/ %G en %F IJOPCM_2009__2_2_225314
Boni, Théodore K.; Kouakou, Thibaut K. Quenching semidiscretizations in time of a nonlocal parabolic problem with Neumann boundary condition.. International Journal of Open Problems in Computer Science and Mathematics. IJOPCM, Tome 2 (2009) no. 2, p. 311. http://geodesic.mathdoc.fr/item/IJOPCM_2009__2_2_225314/