Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2024_34_4_a5, author = {Abbas, Sidra and Ojo, Stephen and Krichen, Moez and Alamro, Meznah A. and Mihoub, Alaeddine and Vilcekova, Lucia}, title = {Autism spectrum disorder detection in toddlers and adults using deep learning}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {631--645}, publisher = {mathdoc}, volume = {34}, number = {4}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_4_a5/} }
TY - JOUR AU - Abbas, Sidra AU - Ojo, Stephen AU - Krichen, Moez AU - Alamro, Meznah A. AU - Mihoub, Alaeddine AU - Vilcekova, Lucia TI - Autism spectrum disorder detection in toddlers and adults using deep learning JO - International Journal of Applied Mathematics and Computer Science PY - 2024 SP - 631 EP - 645 VL - 34 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_4_a5/ LA - en ID - IJAMCS_2024_34_4_a5 ER -
%0 Journal Article %A Abbas, Sidra %A Ojo, Stephen %A Krichen, Moez %A Alamro, Meznah A. %A Mihoub, Alaeddine %A Vilcekova, Lucia %T Autism spectrum disorder detection in toddlers and adults using deep learning %J International Journal of Applied Mathematics and Computer Science %D 2024 %P 631-645 %V 34 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_4_a5/ %G en %F IJAMCS_2024_34_4_a5
Abbas, Sidra; Ojo, Stephen; Krichen, Moez; Alamro, Meznah A.; Mihoub, Alaeddine; Vilcekova, Lucia. Autism spectrum disorder detection in toddlers and adults using deep learning. International Journal of Applied Mathematics and Computer Science, Tome 34 (2024) no. 4, pp. 631-645. http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_4_a5/
[1] Ahmed, I.A., Senan, E.M., Rassem, T.H., Ali, M.A., Shatnawi, H.S.A., Alwazer, S.M. and Alshahrani, M. (2022). Eye tracking-based diagnosis and early detection of autism spectrum disorder using machine learning and deep learning techniques, Electronics 11(4): 530.
[2] Al Duhayyim, M., Abbas, S., Al Hejaili, A., Kryvinska, N., Almadhor, A. and Mohammad, U.G. (2023). An ensemble machine learning technique for stroke prognosis, Computer Systems Science & Engineering 47(1): 413-429.
[3] Alqaysi, M., Albahri, A. and Hamid, R.A. (2022). Hybrid diagnosis models for autism patients based on medical and sociodemographic features using machine learning and multicriteria decision-making (MCDM) techniques: An evaluation and benchmarking framework, Computational and Mathematical Methods in Medicine 2022(1): 9410222.
[4] Alsuliman, M. and Al-Baity, H.H. (2022). Efficient diagnosis of autism with optimized machine learning models: An experimental analysis on genetic and personal characteristic datasets, Applied Sciences 12(8): 3812.
[5] Amin, J., Sharif, M., Haldorai, A., Yasmin, M. and Nayak, R.S. (2021). Brain tumor detection and classification using machine learning: A comprehensive survey, Complex & Intelligent Systems 8(4): 3161-3183.
[6] Ashok, K. and Gopikrishnan, S. (2023). Improving security performance of healthcare data in the Internet of medical things using a hybrid metaheuristic model, International Journal of Applied Mathematics and Computer Science 33(4): 623-636, DOI: 10.34768/amcs-2023-0044.
[7] Atlam, E.-S., Masud, M., Rokaya, M., Meshref, H., Gad, I. and Almars, A.M. (2024). EASDM: Explainable autism spectrum disorder model based on deep learning, Journal of Disability Research 3(1): 20240003.
[8] Baizer, J.S. (2024). Neuroanatomy of autism: What is the role of the cerebellum?, Cerebral Cortex 34(13): 94-103.
[9] Bala, M., Ali, M.H., Satu, M.S., Hasan, K.F. and Moni, M.A. (2022). Efficient machine learning models for early stage detection of autism spectrum disorder, Algorithms 15(5): 166.
[10] Barik, K., Watanabe, K., Bhattacharya, J. and Saha, G. (2023). A fusion-based machine learning approach for autism detection in young children using magnetoencephalography signals, Journal of Autism and Developmental Disorders 53(12): 4830-4848.
[11] Beary, M., Hadsell, A., Messersmith, R. and Hosseini, M.-P. (2020). Diagnosis of autism in children using facial analysis and deep learning, arXiv: 2008.02890.
[12] Casalino, G., Castellano, G., Hryniewicz, O., Leite, D., Opara, K., Radziszewska, W. and Kaczmarek-Majer, K. (2023). Semi-supervised vs. supervised learning for mental health monitoring: A case study on bipolar disorder, International Journal of Applied Mathematics and Computer Science 33(3): 419-428, DOI: 10.34768/amcs-2023-0030.
[13] Chaste, P. and Leboyer, M. (2012). Autism risk factors: Genes, environment, and gene-environment interactions, Dialogues in Clinical Neuroscience 14(3): 281-292.
[14] Chen, G. (2016). A gentle tutorial of recurrent neural network with error backpropagation, arXiv: 1610.02583.
[15] Chen, T. and Guestrin, C. (2016). XGBoost: A scalable tree boosting system, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, pp. 785-794.
[16] Deng, X., Zhang, J., Liu, R. and Liu, K. (2022). Classifying ASD based on time-series FMRI using spatial-temporal transformer, Computers in Biology and Medicine 151: 106320.
[17] Farooq, M.S., Tehseen, R., Sabir, M. and Atal, Z. (2023). Detection of autism spectrum disorder (ASD) in children and adults using machine learning, Scientific Reports 13(1): 9605.
[18] Francese, R. and Yang, X. (2022). Supporting autism spectrum disorder screening and intervention with machine learning and wearables: A systematic literature review, Complex & Intelligent Systems 8(5): 3659-3674.
[19] Garg, A., Parashar, A., Barman, D., Jain, S., Singhal, D., Masud, M. and Abouhawwash, M. (2022). Autism spectrum disorder prediction by an explainable deep learning approach, Computers, Materials & Continua 71(1): 1459-1471.
[20] Hosmer Jr, D.W., Lemeshow, S. and Sturdivant, R.X. (2013). Applied Logistic Regression, Wiley, Hoboken.
[21] Hsu, C.-W. (2003). A Practical Guide to Support Vector Classification, National Taiwan University, Taipei.
[22] Islam, M.Z., Islam, M.M. and Asraf, A. (2020). A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images, Informatics in Medicine Unlocked 20: 100412.
[23] Kanhirakadavath, M.R. and Chandran, M.S.M. (2022). Investigation of eye-tracking scan path as a biomarker for autism screening using machine learning algorithms, Diagnostics 12(2): 518.
[24] Lu, A. and Perkowski, M. (2021). Deep learning approach for screening autism spectrum disorder in children with facial images and analysis of ethnoracial factors in model development and application, Brain Sciences 11(11): 1446.
[25] Mohammad, U.G., Imtiaz, S., Shakya, M., Almadhor, A. and Anwar, F. (2022). An optimized feature selection method using ensemble classifiers in software defect prediction for healthcare systems, Wireless Communications and Mobile Computing 2022(1): 1028175.
[26] Mohanty, A.S., Parida, P. and Patra, K. (2021). Identification of autism spectrum disorder using deep neural network, Journal of Physics: Conference Series, 1921: 012006.
[27] Omar, K.S., Mondal, P., Khan, N.S., Rizvi, M.R.K. and Islam, M.N. (2019). A machine learning approach to predict autism spectrum disorder, 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’s Bazar, Bangladesh, pp. 1-6.
[28] Raj, S. and Masood, S. (2020). Analysis and detection of autism spectrum disorder using machine learning techniques, Procedia Computer Science 167: 994-1004.
[29] Rasul, R.A., Saha, P., Bala, D., Karim, S.R.U., Abdullah, M.I. and Saha, B. (2024). An evaluation of machine learning approaches for early diagnosis of autism spectrum disorder, Healthcare Analytics 5: 100293.
[30] Reddy, P. (2024). Diagnosis of autism in children using deep learning techniques by analyzing facial features, Engineering Proceedings 59(1): 198.
[31] Shahamiri, S.R. and Thabtah, F. (2020). Autism AI: A new autism screening system based on artificial intelligence, Cognitive Computation 12(4): 766-777.
[32] Shahamiri, S.R., Thabtah, F. and Abdelhamid, N. (2022). A new classification system for autism based on machine learning of artificial intelligence, Technology and Health Care 30(3): 605-622.
[33] Sharma, N., Bhandari, H.V., Yadav, N.S. and Shroff, H. (2020). Optimization of IDS using filter-based feature selection and machine learning algorithms, International Journal of Innovative Technology and Exploring Engineering 10(2): 96-102.
[34] Shrivastava, T., Singh, V. and Agrawal, A. (2024). Autism spectrum disorder detection with kNN imputer and machine learning classifiers via questionnaire mode of screening, Health Information Science and Systems 12(1): 18.
[35] Simeoli, R., Rega, A., Cerasuolo, M., Nappo, R. and Marocco, D. (2024). Using machine learning for motion analysis to early detect autism spectrum disorder: A systematic review, Review Journal of Autism and Developmental Disorders pp. 1-20.
[36] Song, Y.-Y. and Ying, L. (2015). Decision tree methods: Applications for classification and prediction, Shanghai Archives of Psychiatry 27(2): 130.
[37] Wang, H., Li, L., Chi, L. and Zhao, Z. (2019). Autism screening using deep embedding representation, Computational Science - ICCS 2019: 19th International Conference, Faro, Portugal, pp. 160-173.
[38] Zhang, M.-L. and Zhou, Z.-H. (2005). A k-nearest neighbor based algorithm for multi-label classification, 2005 IEEE International Conference on Granular Computing, Beijing, China, Vol. 2, pp. 718-721.