Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2024_34_3_a7, author = {Kulczycki, Piotr and Franus, Krystian and Charytanowicz, Ma{\l}gorzata}, title = {A quality index for detection of atypical elements (outliers)}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {439--451}, publisher = {mathdoc}, volume = {34}, number = {3}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_3_a7/} }
TY - JOUR AU - Kulczycki, Piotr AU - Franus, Krystian AU - Charytanowicz, Małgorzata TI - A quality index for detection of atypical elements (outliers) JO - International Journal of Applied Mathematics and Computer Science PY - 2024 SP - 439 EP - 451 VL - 34 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_3_a7/ LA - en ID - IJAMCS_2024_34_3_a7 ER -
%0 Journal Article %A Kulczycki, Piotr %A Franus, Krystian %A Charytanowicz, Małgorzata %T A quality index for detection of atypical elements (outliers) %J International Journal of Applied Mathematics and Computer Science %D 2024 %P 439-451 %V 34 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_3_a7/ %G en %F IJAMCS_2024_34_3_a7
Kulczycki, Piotr; Franus, Krystian; Charytanowicz, Małgorzata. A quality index for detection of atypical elements (outliers). International Journal of Applied Mathematics and Computer Science, Tome 34 (2024) no. 3, pp. 439-451. http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_3_a7/
[1] Aggarwal, C.C. (2013). Outlier Analysis, Springer, Cham.
[2] Agresti, A. (2002). Categorical Data Analysis,Wiley, Hoboken.
[3] Baszczyńska, A. (2016). Smoothing Parameter of the Density Functions for Random Variables in Economic Research, Lodz University Press, Łódź, (in Polish).
[4] Batool, F. and Hennig, C. (2021). Clustering with the average silhouette width, Computational Statistics and Data Analysis 158(6): 107190.
[5] Cateni, S., Colla, V. and Vannucci, M. (2008). Outlier detection methods for industrial applications, in J. Aramburo and A.R. Trevino (Eds), Advances in Robotics, Automation and Control, I-Tech, Vienna, pp. 265-282.
[6] Caltech (2024). NASA Exoplanet Archive, https://exoplanetarchive.ipac.caltech.edu/.
[7] Chacon, J.E. and Duong, T. (2020). Multivariate Kernel Smoothing and Its Applications, Chapman and Hall/CRC, Boca Raton.
[8] Charytanowicz, M., Kulczycki, P., Kowalski, P.A., Lukasik, S. and Czabak-Garbacz, R. (2018). An evaluation of utilizing geometric features for wheat grain classification using x-ray images, Computers and Electronics in Agriculture 144(1): 260-268.
[9] Charytanowicz, M., Perzanowski, K., Januszczak, M., Wołoszyn-Gałęza, A. and Kulczycki, P. (2020). Application of complete gradient clustering algorithm for analysis of wildlife spatial distribution, Ecological Indicators 113(6): 106216.
[10] Czmil, S., Kluska, J. and Czmil, A. (2024). An empirical study of a simple incremental classifier based on vector quantizzation and adaptive resonance theory, International Journal of Applied Mathematics and Computer Science 34(1): 149-165, DOI: 10.61822/amcs-2024-0011.
[11] Dalianis, H. (2018). Clinical Text Mining, Springer, Cham.
[12] Hodge, V. (2011). Outlier and Anomaly Detection: A Survey of Outlier and Anomaly Detection Methods, Lambert Academic Publishing, Saarbrucken.
[13] James, G., Witten, D., Hastie, T., Tibshirani, R. and Taylor, J. (2023). An Introduction to Statistical Learning, Springer, Cham.
[14] Kacprzyk, J. and Pedrycz, W. (2015). Springer Handbook of Computational Intelligence, Springer, Berlin.
[15] Kaggle (2024). Suicide rates overview 1985 to 2016, Dataset, http://www.kaggle.com/datasets/russellyates88/suicide-rates-overview-1985-to-2016.
[16] Kłopotek, R., Kłopotek, M. and Wierzchoń, S. (2020). A feasible k-means kernel trick under non-Euclidean feature space, International Journal of Applied Mathematics and Computer Science 30(4): 703-715, DOI: 10.34768/amcs-2020-0052.
[17] Knuth, D.E. (1988). Art of Computer Programming. Vol. 3: Sorting and Searching, Addison-Wesley, Upper Saddle River.
[18] Kulczycki, P. (2005). Kernel Estimators in Systems Analysis, Scientific and Engineering Publishers, Warsaw, (in Polish).
[19] Kulczycki, P. (2020). Methodically unified procedures for outlier detection, clustering and classification, in K. Arai (Ed.), Proceedings of the Future Technologies Conference (FTC), Springer, Cham, pp. 460-474.
[20] Kulczycki, P. and Franus, K. (2021). Methodically unified procedures for a conditional approach to outlier detection, clustering, and classification, Information Sciences 560: 504-527.
[21] Kulczycki, P. and Kruszewski, D. (2017). Identification of atypical elements by transforming task to supervised form with fuzzy and intuitionistic fuzzy evaluations, Applied Soft Computing 60(11): 623-633.
[22] Kulczycki, P. and Kruszewski, D. (2019). Detection of rare elements in investigation of medical problems, in N.T. Nguen et al., (Eds), Intelligent Information and Database Systems, Springer, Singapore, pp. 257-268.
[23] Lehmann, E.L. and Casella, G. (2011). Theory of Point Estimation, Springer, New York.
[24] Nisbet, R., Miner, G. and Yale, K. (2009). Handbook of Statistical Analysis and Data Mining Applications, Elsevier, London.
[25] Ott, R.L. and Longnecker, M.T. (2015). An Introduction to Statistical Methods and Data Analysis, Cengage, Boston.
[26] Pedrycz, W. and Chen, S.-M. (2017). Data Science and Big Data: An Environment of Computational Intelligence, Springer, Cham.
[27] Rajagopalan, B. and Lall, U. (1995). A kernel estimator for discrete distributions, Journal of Nonparametric Statistics 4(1): 409-426.
[28] Ranga Suri, N.N.R., Narasimha-Murty, M. and Athithan, G. (2019). Outlier Detection: Techniques and Applications, Springer, Cham.
[29] scikit-learn (2004). make_circles, Dataset, https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html.
[30] Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis, Chapman and Hall, London.
[31] Sorzano, C., Vargas, J. and Pascual-Montano, A. (2014). A survey of dimensionality reduction techniques, arXiv: 1403.2877v1.
[32] Wand, M.P. and Jones, M.C. (1995). Kernel Smoothing, Chapman and Hall, New York.
[33] Wasserman, L. (2004). All of Statistics: A Concise Course in Statistical Inference, Springer, New York.
[34] Yang, J., Tan, X. and Rahardja, S. (2023). Outlier detection: How to select k for k-nearest-neighbors-based outlier detectors, Pattern Recognition Letter 174: 112-117.