Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2024_34_3_a0, author = {Kaczorek, Tadeusz}, title = {Transformations of linear standard systems to positive asymptotically stable linear ones}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {341--348}, publisher = {mathdoc}, volume = {34}, number = {3}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_3_a0/} }
TY - JOUR AU - Kaczorek, Tadeusz TI - Transformations of linear standard systems to positive asymptotically stable linear ones JO - International Journal of Applied Mathematics and Computer Science PY - 2024 SP - 341 EP - 348 VL - 34 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_3_a0/ LA - en ID - IJAMCS_2024_34_3_a0 ER -
%0 Journal Article %A Kaczorek, Tadeusz %T Transformations of linear standard systems to positive asymptotically stable linear ones %J International Journal of Applied Mathematics and Computer Science %D 2024 %P 341-348 %V 34 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_3_a0/ %G en %F IJAMCS_2024_34_3_a0
Kaczorek, Tadeusz. Transformations of linear standard systems to positive asymptotically stable linear ones. International Journal of Applied Mathematics and Computer Science, Tome 34 (2024) no. 3, pp. 341-348. http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_3_a0/
[1] Antsaklis, P.J and Michel, A.N. (1997). Linear Systems, Birkhäuser, Boston.
[2] Hautus, M.L.J. and Heymann, M. (1978). Linear feedback - An algebraic approach, SIAM Journal on Control and Optimization 16(1): 83-105.
[3] Gantmacher, F.R. (1959). The Theory of Matrices, Chelsea, London.
[4] Kaczorek, T. (2022). Eigenvalues assignment in uncontrollable linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 70(6): 1-3.
[5] Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer, London.
[6] Kaczorek, T. (1992). Linear Control Systems, Vols. 1 and 2, Wiley, New York.
[7] Kaczorek, T. and Borawski, K. (2021). Descriptor Systems of Integer and Fractional Orders, Springer, Cham.
[8] Kaczorek, T. and Rogowski, K. (2015). Fractional Linear Systems and Electrical Circuits, Springer, Cham.
[9] Kailath, T. (1980). Linear Systems, Prentice-Hall, Englewood Cliffs.
[10] Kalman, R.E. (1960). On the general theory of control systems, Proceedings of the IFAC Congress on Automatic Control, Moscow, Soviet Union, pp. 481-492.
[11] Kalman, R.E. (1963). Mathematical description of linear dynamical systems, Journal of the Society for Industrial and Applied Mathematics A: Control 1(2): 152-192.
[12] Klamka, J. (2018). Controllability and Minimum Energy Control, Springer, Cham.
[13] Klamka, J. (1991). Controllability of Dynamical Systems, Kluwer Academic Publishers, Dordrecht.
[14] Mitkowski, W. (2019). Outline of Control Theory, AGH Publishing House, Kraków, (in Polish).
[15] Sajewski, Ł. (2018). Decentralized stabilization of descriptor fractional positive discrete-time linear systems with delays, in R. Szewczyk et al. (Eds), Advances in Automation, Robotics and Measurement Techniques Advances in Intelligent Systems and Computing, Vol. 743, Springer, Cham, pp. 276-287, DOI:10.1007/978-3-319-77179-3_26.
[16] Sajewski, L. (2017) Stabilization of positive descriptor fractional discrete-time linear system with two different fractional orders by decentralized controller, Bulletin of the Polish Academy of Sciences: Technical Sciences 65(5): 709-714.
[17] Zak, S. (2003). Systems and Control, Oxford University Press, New York.