Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2024_34_2_a2, author = {Wang, Ping and Gao, Min and Li, Junyu and Zhang, Anguo}, title = {Dynamic adjustment neural network-based cooperative control for vehicle platoons with state constraints}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {211--224}, publisher = {mathdoc}, volume = {34}, number = {2}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_2_a2/} }
TY - JOUR AU - Wang, Ping AU - Gao, Min AU - Li, Junyu AU - Zhang, Anguo TI - Dynamic adjustment neural network-based cooperative control for vehicle platoons with state constraints JO - International Journal of Applied Mathematics and Computer Science PY - 2024 SP - 211 EP - 224 VL - 34 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_2_a2/ LA - en ID - IJAMCS_2024_34_2_a2 ER -
%0 Journal Article %A Wang, Ping %A Gao, Min %A Li, Junyu %A Zhang, Anguo %T Dynamic adjustment neural network-based cooperative control for vehicle platoons with state constraints %J International Journal of Applied Mathematics and Computer Science %D 2024 %P 211-224 %V 34 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_2_a2/ %G en %F IJAMCS_2024_34_2_a2
Wang, Ping; Gao, Min; Li, Junyu; Zhang, Anguo. Dynamic adjustment neural network-based cooperative control for vehicle platoons with state constraints. International Journal of Applied Mathematics and Computer Science, Tome 34 (2024) no. 2, pp. 211-224. http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_2_a2/
[1] Chang, B.-J., Hwang, R.-H., Tsai, Y.-L., Yu, B.-H. and Liang, Y.-H. (2019). Cooperative adaptive driving for platooning autonomous self driving based on edge computing, International Journal of Applied Mathematics and Computer Science 29(2): 213-225, DOI: 10.2478/amcs-2019-0016.
[2] Corets, J., Martinez, S., Karatas, T. and Bullo, F. (2002). Coverage control for mobile sensing networks, International Conference on Robotics and Automation, Washington, USA, pp. 1327-1332.
[3] Dutta, R.G., Hu, Y., Yu, F., Zhang, T. and Jin, Y. (2022). Design and analysis of secure distributed estimator for vehicular platooning in adversarial environment, IEEE Transactions on Intelligent Transportation Systems 23(4): 3418-3429.
[4] Earnhardta, C., Groelke, B., Borek, J., Evan, Pelletier, Brennan, S. and Vermillion, C. (2022). Cooperative exchange-based platooning using predicted fuel-optimal operation of heavy-duty vehicles, IEEE Transactions on Intelligent Transportation Systems 23(10): 17312-17324.
[5] Feng, G., Dang, D. and He, Y. (2022). Robust coordinated control of nonlinear heterogeneous platoon interacted by uncertain topology, IEEE Transactions on Intelligent Transportation Systems 23(6): 4982-4992.
[6] Gao, F., Hu, X., Li, S.E., Li, K. and Sun, Q. (2018). Distributed adaptive sliding mode control of vehicular platoon with uncertain interaction topology, IEEE Transactions on Industrial Electronics 65(8): 6352-6361.
[7] Gao, F., Li, S. E., Zheng, Y. and Kum, D. (2016). Robust control of heterogeneous vehicular platoon with uncertain dynamics and communication delay, IET Intelligent Transport Systems 10(7): 503-513.
[8] Gong, S., Zheng, M., Hu, J. and Zhang, A. (2023). Event-triggered cooperative control for high-order nonlinear multi-agent systems with finite-time consensus, International Journal of Applied Mathematics and Computer Science 33(3): 439-448, DOI: 10.34768/amcs-2023-0032.
[9] Hu, B.-B., Zhang, H.-T., Yao, W., Ding, J. and Cao, M. (2023). Spontaneous-ordering platoon control for multirobot path navigation using guiding vector fields, IEEE Transactions on Robotics 39(4): 2654-2668.
[10] Hu, M., Li, C., Bian, Y., Zhang, H., Qin, Z. and Xu, B. (2022). Fuel economy-oriented vehicle platoon control using economic model predictive control, IEEE Transactions on Intelligent Transportation Systems 23(11).
[11] Huang, J., Chen, J., Yang, H. and Li, D. (2023). Vehicle platoon tracking control based on adaptive neural network algorithm, International Journal of Control, Automation and Systems 21(10): 3405-3418.
[12] Huang, Z., Chu, D.,Wu, C. and He, Y. (2019). Path planning and cooperative control for automated vehicle platoon using hybrid automata, IEEE Transactions on Intelligent Transportation Systems 20(3): 959-974.
[13] Li, J., Zhang, A. and Peng, C. (2022). Neuro-adaptive cooperative control for a class of high-order nonlinear multi-agent systems, Measurement and Control 56(5-6): 928-937.
[14] Li, K., Li, S.E., Gao, F., Lin, Z., Li, J. and Sun, Q. (2020a). Robust distributed consensus control of uncertain multiagents interacted by eigenvalue-bounded topologies, IEEE Internet of Things Journal 7(5): 3790-3798.
[15] Li, M., Cao, Z. and Li, Z. (2021). A reinforcement learning-based vehicle platoon control strategy for reducing energy consumption in traffic oscillations, IEEE Transactions on Neural Networks and Learning Systems 32(12): 5309-5322.
[16] Li, S. E., Zheng, Y., Li, K. and Wang, J. (2015). An overview of vehicular platoon control under the four-component framework, IEEE Intelligent Vehicles Symposium (IV), Seoul, Korea, pp. 286-291.
[17] Li, Y., Chen, W., Peeta, S. and Wang, Y. (2020b). Platoon control of connected multi-vehicle systems under v2x communications: Design and experiments, IEEE Transactions on Intelligent Transportation Systems 21(5): 1891-1902.
[18] Li, Y., Tang, C., Peeta, S. and Wang, Y. (2019). Nonlinear consensus-based connected vehicle platoon control incorporating car-following interactions and heterogeneous time delays, IEEE Transactions on Intelligent Transportation Systems 20(6): 2209-2219.
[19] Liang, X., Xu, C. and Wang, D. (2020). Adaptive neural network control for marine surface vehicles platoon with input saturation and output constraints, AIMS Math 5(1): 587-602.
[20] Liu, H., Zhuang, W., Yin, G., Tang, Z. and Xu, L. (2018). Strategy for heterogeneous vehicular platoons merging in automated highway system, Chinese Control And Decision Conference (CCDC), Shenyang, China, pp. 2736-2746.
[21] Liu, Y., Yao, D., Li, H. and Lu, R. (2022). Distributed cooperative compound tracking control for a platoon of vehicles with adaptive NN, IEEE Transactions on Cybernetics 52(7): 7039-7048.
[22] Liu, Y., Zong, C. and Zhang, D. (2019). Lateral control system for vehicle platoon considering vehicle dynamic characteristics, IET Intelligent Transport Systems 13(9): 1356-1364.
[23] Mitrinovic, D.S., Pecaric, J.E. and Fink, A.M. (1993a). Cauchy’s and Related Inequalities, Springer, Dordrecht.
[24] Mitrinovic, D.S., Pecaric, J.E. and Fink, A.M. (1993b). Young’s Inequality, Springer, Dordrecht.
[25] Okamoto, A., Feeley, J., Edwards, D. and Wall, R. (2004). Robust control of a platoon of underwater autonomous vehicles, Oceans’04, MTS/IEEE Techno-Ocean, Kobe, Japan, pp. 505-510.
[26] Peng, C., Zhang, A. and Li, J. (2021). Neuro-adaptive cooperative control for high-order nonlinear multi-agent systems with uncertainties, International Journal of Applied Mathematics and Computer Science 31(4): 635-645, DOI: 10.34768/amcs-2021-0044.
[27] Prayitno, A., Indrawati, V. and Nilkhamhang, I. (2023). Distributed model reference control for synchronization of a vehicle platoon with limited output information and subject to periodical intermittent information, International Journal of Applied Mathematics and Computer Science 33(4): 537-551, DOI: 10.34768/amcs-2023-0039.
[28] Wang, P., Deng, H., Zhang, J., Wang, L., Zhang, M. and Li, Y. (2022). Model predictive control for connected vehicle platoon under switching communication topology, IEEE Transactions on Intelligent Transportation Systems 23(7): 7817-7830.
[29] Wang, W., Gao, X., Li, T., Wang, Y. and Chen, C.L.P. (2023). Observer-based platoon formation control with prescribed performance guarantees for unmanned surface vehicles in presence of nonsmooth input characteristics, IEEE Transactions on Circuits and Systems II: Express Briefs 71(3): 1226-1230.
[30] Wu, Z., Sun, J. and Hong, S. (2022). RBFNN-based adaptive event-triggered control for heterogeneous vehicle platoon consensus, IEEE Transactions on Intelligent Transportation Systems 23(10): 18761-18773.
[31] Zhang, D., Shen, Y.-P., Zhou, S.-Q., Dong, X.-W. and Yu, L. (2021). Distributed secure platoon control of connected vehicles subject to DoS attack: Theory and application, IEEE Transactions on Systems, Man, and Cybernetics: Systems 51(11): 7269-7278.
[32] Zhao, X., Chen, Y.H. and Zhao, H. (2017). Robust approximate constraint-following control for autonomous vehicle platoon systems, Asian Journal of Control 20(4): 1611-1623.
[33] Zhou, H., Saigal, R., Dion, F. and Yang, L. (2012). Vehicle platoon control in high-latency wireless communications environment: Model predictive control method, Journal of the Transportation Research Board 2324(1): 81-90.