Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2023_33_4_a11, author = {Wawryn, Krzysztof and Poczekaj{\l}o, Pawe{\l}}, title = {2-D lossless {FIR} filter design using synthesis of the paraunitary transfer function matrix}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {673--686}, publisher = {mathdoc}, volume = {33}, number = {4}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_4_a11/} }
TY - JOUR AU - Wawryn, Krzysztof AU - Poczekajło, Paweł TI - 2-D lossless FIR filter design using synthesis of the paraunitary transfer function matrix JO - International Journal of Applied Mathematics and Computer Science PY - 2023 SP - 673 EP - 686 VL - 33 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_4_a11/ LA - en ID - IJAMCS_2023_33_4_a11 ER -
%0 Journal Article %A Wawryn, Krzysztof %A Poczekajło, Paweł %T 2-D lossless FIR filter design using synthesis of the paraunitary transfer function matrix %J International Journal of Applied Mathematics and Computer Science %D 2023 %P 673-686 %V 33 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_4_a11/ %G en %F IJAMCS_2023_33_4_a11
Wawryn, Krzysztof; Poczekajło, Paweł. 2-D lossless FIR filter design using synthesis of the paraunitary transfer function matrix. International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 4, pp. 673-686. http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_4_a11/
[1] [1] Andraka, R. (1998). A survey of CORDIC algorithms for FPGA based computers, Symposium on Field Programmable Gate Arrays, North Kingstown, USA, pp. 191-200.
[2] [2] Anju, R.T. and Mathurakani, M. (2016). Realization of hardware architectures for Householder transformation based QR decomposition using Xilinx system generator block sets, International Journal of Science Technology and Engineering 2(8): 202-206.
[3] [3] Antoniou, A. (2005). Digital Signal Processing: Signals, Systems, and Filters, McGraw-Hill Education, New York.
[4] [4] Basu, S. and Fettweis, A. (1985). On the factorization of scattering transfer matrices of multidimensional lossless two-ports, IEEE Transactions on Circuits and Systems 32(9): 925-934.
[5] [5] Belevitch, V. (1968). Classical Network Theory, Holden-Day, San Francisco.
[6] [6] Bose, N.K. and Strintzis, M.G. (1973). A solution to the multivariable matrix factorization problem, Journal of Engineering Mathematics 7: 263-271.
[7] [7] Brent, R.P. and Zimmermann, P. (2010). Modern Computer Arithmetic, Cambridge University Press, Cambridge.
[8] [8] Brugière, T., Baboulin, M., Valiron, B. and Allouche, C. (2019). Quantum circuits synthesis using Householder transformations, Computer Physics Communications 248: 107001.
[9] [9] Charalambous, C. (1985). The performance of an algorithm for minimax design of two-dimensional linear phase FIR digital filters, IEEE Transactions on Circuits and Systems 32(10): 1016-1028.
[10] [10] Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C. (2009). Introduction to Algorithms, 3rd Edition, MIT Press, Cambridge.
[11] [11] Deprettere, E. and Dewilde, P. (1980). Orthogonal cascade realization of real multiport digital filters, International Journal of Circuit Theory and Applications 8(3): 245-272.
[12] [12] Dewilde, P. (2019). The power of orthogonal filtering, IEEE Circuits and Systems Magazine 18: 70-C3.
[13] [13] Fettweis, A. (1971). Digital filter structures related to classical filter networks, Archiv der elektrischen Übertragung: AEÜ 25: 79-89.
[14] [14] Fettweis, A. (1982). On the scattering matrix and the scattering transfer matrix of multidimensional lossless two-ports, Archiv der elektrischen Übertragung: AEÜ 36: 374-381.
[15] [15] Fettweis, A. (1991). The role of passivity and losslessness in multidimensional digital signal processing-New challenges, IEEE International Symposium on Circuits and Systems, Singapore, Vol. 1, pp. 112-115.
[16] [16] Golub, G. and Loan, C. (1996). Matrix Computations, Johns Hopkins University Press, Baltimore.
[17] [17] Kaczorek, T. (2008). The choice of the forms of Lyapunov functions for a positive 2D Roesser model, International Journal of Applied Mathematics and Computer Science 17(4): 471-475, DOI: 10.2478/v10006-007-0039-7.
[18] [18] Kaczorek, T. and Rogowski, K. (2010). Positivity and stabilization of fractional 2D linear systems described by the Roesser model, International Journal of Applied Mathematics and Computer Science 20(1): 85-92, DOI: 10.2478/v10006-010-0006-6.
[19] [19] Liu, Q., Ling, B., Dai, Q., Miao, Q. and Liu, C. (2017). Optimal maximally decimated M-channel mirrored paraunitary linear phase FIR filter bank design via norm relaxed sequential quadratic programming, Journal of Industrial and Management Optimization 13(4): 1993-2011.
[20] [20] Lu, W.-S. (2002). A unified approach for the design of 2-D digital filters via semidefinite programming, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49(6): 814-826.
[21] [21] Lu, W.-S. and Antoniou, A. (1992). Two-Dimensional Digital Filters, 1st Edition, CRC Press, New York.
[22] [22] Luenbergerand, D.G. and Ye, Y. (2008). Linear and Nonlinear Programming, Kluwer Academic Publishers, Stanford.
[23] [23] Mitra, S.K. and Kaiser, J.K. (1993). Handbook of Digital Signal Processing, Wiley-Interscience, New York.
[24] [24] Piekarski, M. and Wirski, R. (2005). On the transfer matrix synthesis of two-dimensional orthogonal systems, Proceedings of the 2005 European Conference on Circuit Theory and Design, Cork, Ireland, Vol. 3, pp. III/117–III/120.
[25] [25] Puchala, D. (2022). Effective lattice structures for separable two-dimensional orthogonal wavelet transforms, Bulletin of the Polish Academy of Sciences: Technical Sciences 70(3): 1-8.
[26] [26] Rao, C. and Dewilde, P. (1987). On lossless transfer functions and orthogonal realizations, IEEE Transactions on Circuits and Systems 34(6): 677-678.
[27] [27] Roesser, R. (1975). A discrete state-space model for linear image processing, IEEE Transactions on Automatic Control 20(1): 1-10.
[28] [28] Sienkowski, S. and Krajewski, M. (2021). On the statistical analysis of the harmonic signal autocorrelation function, International Journal of Applied Mathematics and Computer Science 31(4): 729-744, DOI: 10.34768/amcs-2021-0050.
[29] [29] Smith III, J.O. (2007). Introduction to Digital Filters with Audio Applications, W3K Publishing, Stanford.
[30] [30] Soman, A. and Vaidyanathan, P. (1995). A complete factorization of paraunitary matrices with pairwise mirror-image symmetry in the frequency domain, IEEE Transactions on Signal Processing 43(4): 1002-1004.
[31] [31] Stancic, S., Rajovic, V. and Slijepcevic, I. (2018). Performance of FPGA implementation of the orthogonal two-channel filter bank for perfect reconstruction, 26th Telecommunications Forum, TELFOR 2018, Belgrade, Serbia, pp. 1-4.
[32] [32] Vaidyanathan, P. and Mitra, S. (2019). Robust digital filter structures: A direct approach, IEEE Circuits and Systems Magazine 19(1): 14-32.
[33] [33] Valkova-Jarvis, Z., Stoynov, V. and Mihaylova, D. (2019). Designing efficient bilinear bicomplex orthogonal digital filters, IEEE Conference on Microwave Theory and Techniques in Wireless Communications, MTTW 2019, Riga, Latvia, pp. 5-8.
[34] [34] Wang, J., Chen, Y., Chakraborty, R. and Yu, S. (2020). Orthogonal convolutional neural networks, IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, USA, pp. 11502-11512.
[35] [35] Wawryn, K. and Wirski, R. (2009). Synthesis of 2-D lossless FIR filter transfer function matrix, 2009 7th International Conference on Information, Communications and Signal Processing, ICICS 2009, Macau, China, pp. 1-5.
[36] [36] Wawryn, K., Wirski, R. and Strzeszewski, B. (2010). Implementation of finite impulse response systems using rotation structures, International Symposium on Information Theory and Its Applications, ISITA 2010, Taichung, Taiwan, pp. 606-610.
[37] [37] Wirski, R. (2008). On the realization of 2-D orthogonal state-space systems, Signal Processing 88(11): 2747-2753.
[38] [38] Wirski, R. and Wawryn, K. (2008). Roesser’s model realization of 2-D FIR lossless transfer matrices, 2008 International Symposium on Information Theory and Its Applications, Auckland, New Zealand, pp. 1-6.
[39] [39] Wnuk, M. (2008). Remarks on hardware implementation of image processing algorithms, International Journal of Applied Mathematics and Computer Science 18(1): 105-110, DOI: 10.2478/v10006-008-0010-2.
[40] [40] Yang, Y., Zhu, W.-P. and Yan, J. (2017). Minimax design of orthogonal filter banks with sparse coefficients, 30th IEEE Canadian Conference on Electrical and Computer Engineering, CCECE 2017, Windsor, Canada, pp. 1-4.