Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2023_33_2_a1, author = {Peru\'n, Grzegorz}, title = {A dynamic model as a tool for design and optimization of propulsion systems of transport means}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {183--195}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_2_a1/} }
TY - JOUR AU - Peruń, Grzegorz TI - A dynamic model as a tool for design and optimization of propulsion systems of transport means JO - International Journal of Applied Mathematics and Computer Science PY - 2023 SP - 183 EP - 195 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_2_a1/ LA - en ID - IJAMCS_2023_33_2_a1 ER -
%0 Journal Article %A Peruń, Grzegorz %T A dynamic model as a tool for design and optimization of propulsion systems of transport means %J International Journal of Applied Mathematics and Computer Science %D 2023 %P 183-195 %V 33 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_2_a1/ %G en %F IJAMCS_2023_33_2_a1
Peruń, Grzegorz. A dynamic model as a tool for design and optimization of propulsion systems of transport means. International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 2, pp. 183-195. http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_2_a1/
[1] [1] Ajmi, M. and Velex, P. (2005). A model for simulating the quasi-static and dynamic behaviour of solid wide-faced spur and helical gears, Mechanism and Machine Theory 40(2): 173-190.
[2] [2] Al-Tubi, I., Long, H., Zhang, J. and Shaw, B. (2015). Experimental and analytical study of gear micropitting initiation and propagation under varying loading conditions, Wear 328-329: 8-16.
[3] [3] Alves, J.T.,Wang, J., Guingand, M., de Vaujany, J.-P. and Velex, P. (2012). Static and dynamic models for spiral bevel gears, Mechanics Industry 13(5): 325-335.
[4] [4] Bartczuk, Ł., Przybył, A. and Cpałka, K. (2016). A new approach to nonlinear modelling of dynamic systems based on fuzzy rules, International Journal of Applied Mathematics and Computer Science 26(3): 603-621, DOI: 10.1515/amcs-2016-0042.
[5] [5] Bartelmus, W. (2001). Mathematical modelling and computer simulations as an aid to gearbox diagnostics, Mechanical Systems and Signal Processing 15(5): 855-871.
[6] [6] Blankenship, G.W. and Singh, R. (1992). A comparative study of selected gear mesh interface dynamic models, 6th International Power Transmission and Gearing Conference: Advancing Power Transmission into the 21st Century, Scottsdale, USA, pp. 137-146.
[7] [7] Chen, Z., Zhang, J., Zhai, W., Wang, Y. and Liu, J. (2017). Improved analytical methods for calculation of gear tooth fillet-foundation stiffness with tooth root crack, Engineering Failure Analysis 82: 72-81.
[8] [8] Cheng, C., Wang, M., Wang, J., Shao, J. and Chen, H. (2022). An SFA-HMM performance evaluation method using state difference optimization for running gear systems in high-speed trains, International Journal of Applied Mathematics and Computer Science 32(3): 389-402, DOI: 10.34768/amcs-2022-0028.
[9] [9] Choy, F., Polyshchuk, V., Zakrajsek, J., Handschuh, R. and Townsend, D. (1996). Analysis of the effects of surface pitting and wear on the vibration of a gear transmission system, Tribology International 29(1): 77-83.
[10] [10] Dabrowski, Z., Radkowski, S. and Wilk, A. (2000). Dynamics of Gears. Research and Simulation in Operationally Oriented Design, WiZP Institute of Technology Exploitation, Radom, (in Polish).
[11] [11] Dadon, I., Koren, N., Klein, R. and Bortman, J. (2018). A realistic dynamic model for gear fault diagnosis, Engineering Failure Analysis 84: 77-100.
[12] [12] Ding, H. and Kahraman, A. (2007). Interactions between nonlinear spur gear dynamics and surface wear, Journal of Sound and Vibration 307(3): 662-679.
[13] [13] Ericson, T.M. and Parker, R.G. (2014). Experimental measurement of the effects of torque on the dynamic behavior and system parameters of planetary gears, Mechanism and Machine Theory 74: 370-389.
[14] [14] Fernández, A., Iglesias, M., de Juan, A., García, P., Sancibrián, R. and Viadero, F. (2014). Gear transmission dynamic: Effects of tooth profile deviations and support flexibility, Applied Acoustics 77: 138-149.
[15] [15] Grzadziela, A., Kiciński, R., Szturomski, B. and Piskur, P. (2021). Simulation analysis of the stabilization of the hooks’ block with the usage of a wind deflector, Naše more 2021 17: 85.
[16] [16] Grzadziela, A., Kiciński, R., Szturomski, B. and Piskur, P. (2022). Determining the trajectory of the crane block using the finite element method, Naše more 69(2): 92-102.
[17] [17] Gu, X. and Velex, P. (2013). On the dynamic simulation of eccentricity errors in planetary gears, Mechanism and Machine Theory 61: 14-29.
[18] [18] Howard, I., Jia, S. and Wang, J. (2001). The dynamic modelling of a spur gear in mesh including friction and a crack, Mechanical Systems and Signal Processing 15(5): 831-853.
[19] [19] Hydro-Québec/The MathWorks (2009). SimPowerSystems™ 5 User’s Guide.
[20] [20] Inalpolat, M. and Kahraman, A. (2010). A dynamic model to predict modulation sidebands of a planetary gear set having manufacturing errors, Journal of Sound and Vibration 329(4): 371-393.
[21] [21] Janczak, A. and Korbicz, J. (2019). Two-stage instrumental variables identification of polynomial Wiener systems with invertible nonlinearities, International Journal of Applied Mathematics and Computer Science 29(3): 571-580, DOI: 10.2478/amcs-2019-0042.
[22] [22] Janiszowski, K.B. and Wnuk, P. (2016). Identification of parametric models with a priori knowledge of process properties, International Journal of Applied Mathematics and Computer Science 26(4): 767-776, DOI: 10.1515/amcs-2016-0054.
[23] [23] Lai, J., Liu, Y., Xu, X., Li, H., Xu, J., Wang, S. and Guo, W. (2022). Dynamic modeling and analysis of Ravigneaux planetary gear set with unloaded floating ring gear, Mechanism and Machine Theory 170(8): 104696, DOI:10.1016/j.mechmachtheory.2021.104696.
[24] [24] Liang, X., Zuo, M.J. and Hoseini, M.R. (2015). Vibration signal modeling of a planetary gear set for tooth crack detection, Engineering Failure Analysis 48: 185-200.
[25] [25] Ma, H., Pang, X., Feng, R., Zeng, J. and Wen, B. (2015). Improved time-varying mesh stiffness model of cracked spur gears, Engineering Failure Analysis 55: 271-287.
[26] [26] Marques, P.M., Martins, R.C. and Seabra, J.H. (2016). Gear dynamics and power loss, Tribology International 97: 400-411.
[27] [27] Mohammed, O.D., Rantatalo, M. and Aidanpää, J.-O. (2015). Dynamic modelling of a one-stage spur gear system and vibration-based tooth crack detection analysis, Mechanical Systems and Signal Processing 54: 293-305.
[28] [28] Neusser, Z., Vampola, T. and Valasek, M. (2017). Analytical gear mesh model using 3D gear geometry, Mechanics 23(3): 425-431, DOI: 10.5755/j01.mech.23.3.14325.
[29] [29] Osman, T. and Velex, P. (2010). Static and dynamic simulations of mild abrasive wear in wide-faced solid spur and helical gears, Mechanism and Machine Theory 45(6): 911-924.
[30] [30] Özgüven, H.N. and Houser, D. (1988). Mathematical models used in gear dynamics-A review, Journal of Sound and Vibration 121(3): 383-411.
[31] [31] Pandya, Y. and Parey, A. (2013). Simulation of crack propagation in spur gear tooth for different gear parameter and its influence on mesh stiffness, Engineering Failure Analysis 30: 124-137.
[32] [32] Peruń, G. (2006). The effect of damage to the components of a planetary gearbox on the forces in the gears, Problemy Transportu 1(1): 23-38, (in Polish).
[33] [33] Peruń, G. (2017). Modeling of dynamic phenomena occurring in power transmission systems with toothed gears, Przegląd Mechaniczny 1(10): 24-29, (in Polish).
[34] [34] Piskur, P., Szymak, P. and Larzewski, B. (2021). Shipyard crane modeling methods, Pedagogika 93(S6): 279-290.
[35] [35] Razpotnik, M., Bischof, T. and Boltežar, M. (2015). The influence of bearing stiffness on the vibration properties of statically overdetermined gearboxes, Journal of Sound and Vibration 351: 221-235.
[36] [36] Wang, J., Li, R., and Peng, X. (2003). Survey of nonlinear vibration of gear transmission systems, Applied Mechanics Reviews 56(3): 309-329.
[37] [37] Yassine, D., Ahmed, H., Lassaad, W. and Mohamed, H. (2014). Effects of gear mesh fluctuation and defaults on the dynamic behavior of two-stage straight bevel system, Mechanism and Machine Theory 82: 71-86.